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Abstract

Multi-stage programming is a paradigm of program generation and has been studied inten-
sively because it allows us to generate low-level programs specialized in run-time parameters
from abstracted programs. Especially, MetaOCaml, a multi-stage programming language,
guarantees type safety and scope safety for generated programs, at compile time. However,
because it is difficult to guarantee those safety properties, MetaOCaml is restricted to term
generation only and cannot generate modules, which are an indispensable mechanism for
high-level abstractions. Watanabe et al. proposed a language for module generation and
implemented it via a translation to MetaOCaml. Unfortunately, their solution has a serious
problem that generated code may become exponentially large, and their language is too
liberal to be translated to plain MetaOCaml.

In this thesis, we propose two multi-stage programming languages for module generation
and refined translations for these languages. Our translations do not suffer from the code-
duplication problem. The key idea is to use the genlet primitive in the latest MetaOCaml,
which performs let insertion at the code-generation time to allow sharing of code fragments.
To our knowledge, our work is the first to apply genlet to code generation for modules. Our
languages correspond to two module styles: first-class modules with generative functors and
second-class modules with applicative functors, which are both supported by MetaOCaml
and useful for modular programming. We conduct a few experiments using a microbench-
mark, and the result shows that our method is effective to reduce the size of generated code
to be linear.
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Chapter 1

Introduction

Program generation has been studied intensively and applied in a wide variety of fields
[1] since it can break the trade-off between productivity and performance in application
developments. Especially, Multi-Stage Programming (MSP) is an effective approach to
generate programs for the following reasons. First, MSP languages provide a way to generate
programs specialized in run-time parameters. Second, safety of generated code is guaranteed
statically (at compile time). Since metaprogramming for generating programs is generally
complex and error-prone, it is worth to use systems that provide static safety. For these
reasons, MSP is supported in various languages such as OCaml [2], Scala [3, 4], Haskell [5],
and C# [6], and is used in various domains such as high-performance computing [7], stream
processing pipelines [8], SQL query processor [9], and combinational circuits generation
[10]. Unfortunately, because it is difficult to guarantee its safety beyond term generation,
generating modules is not allowed in MetaOCaml, a multi-stage extension of OCaml [2].

A module system in OCaml is highly valuable for providing high-level abstraction and
developing practical applications. Large programs can be developed efficiently using mod-
ules, as they allow us to build each software component independently, and to compose
them in a safe way to achieve reusability and maintainability. On the practical side, Mira-
geOS1 is a successful example of large-scale applications which use a number of modules.
In the implementation of MirageOS, OS components such as device drivers and protocols
are implemented as independent libraries, which contain thousands of modules [11]. On the
research side, interesting extensions using modules have been proposed: modular implicits
[12], extensible language-integrated query [13], and tagless-final embedding [14].

Inoue et al. [15] were the first to propose a language extension for generating code of
modules in the MSP style. They investigated abstraction overhead in ML-style modules,
and pointed out that the problem may be solved in a hypothetical extension with module
generation. Watanabe et al. [16] proposed a language λ<M> for generating and manipulat-
ing code of modules, and implemented the language by a translation to plain MetaOCaml.
They have also conducted an experiment to show that the abstraction overhead in modules
can be reduced. Unfortunately, their approach has some problems. First, code generated by
their method can become so large that it may not compile. Second, their language allows

1https://mirage.io
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expressions that cannot be translated into MetaOCaml.
In this thesis, we propose languages and its implementations that solve the problems

of previous work to generate modules without regret. Our contributions are summarized
below.

• We solve the code-explosion problem in Watanabe et al.’s approach. Our key idea is
to use a MetaOCaml’s primitive called genlet which allows performing let insertion to
avoid code duplication.

• We give two refined languages for module generation: λ<MA> and λ<MG>. The lan-
guage λ<MA> is based on second-class modules which are standard in OCaml and has
functors with applicative semantics, while the language λ<MG> is based on first-class
modules and has functors with generative semantics. Our languages provide impor-
tant features in modular programming such as abstract types and nested modules.
All programs typed in our languages are translated into plain MetaOCaml. We prove
that the translation for λ<MA> preserves types.

The rest of this thesis is organized as follows: Chapter 2 explains background knowledge
such as a module system and multi-stage programming. Chapter 3 explains the motivation
for generating modules, and describes the previous work and its problems. Chapter 4
proposes our solution. Chapter 5 defines the language λ<MA> for applicative functors
and its translation to MetaOCaml. Chapter 6 defines the language λ<MG> for generative
functors and its translation to MetaOCaml. Chapter 7 shows the results of experiments
on microbenchmark. Chapter 8 discusses our work. Chapter 9 states the related work.
Chapter 10 gives conclusion and future work.

2



Chapter 2

Background

In this chapter, we state the background of our study. First, we explain a module system
in OCaml. Second, we introduce program generation in Multi-Stage Programming.

2.1 Module System in OCaml
Modules are a language feature in OCaml to package relevant definitions and separate
specifications and implementations, which allow us to develop large-scale applications in a
safe way that achieves reusability and maintainability. This section illustrates the basics
and key features of modules with several examples.

2.1.1 Structures

Structures correspond to an implementation of modules, which are defined by a sequence
of components. The components consist of definitions of types, values, and modules.

Figure 2.1 shows an example of a structure that represents a set of integers. The structure
IntSet is defined by the expression struct ... end, and has two type components, elt t
and set t, that represent the type of the element and the type of the set respectively. In
this case, the type elt t is defined as the type int, and the set t is defined as the list of
elt t. In addition, it has the value component member which returns whether the argument
set contains the argument elt. Components can be referenced from outside the structure
by the dot notation. For example, we write IntSet.member to refer to the function member.
In this thesis, structures are sometimes called modules if there is no confusion.

2.1.2 Signatures

Signatures correspond to a specification of modules. Signatures achieve data abstraction
to eliminate programs that depend on an implementation of modules. Therefore, signa-
tures make it easy to modify or replace an implementation of modules, which improves
maintainability of programs.

Continuing with the example in Figure 2.1, users of IntSet should not know the imple-
mentation details. To hide the fact that the set is implemented by the list, we can define the

3



module IntSet =
struct

type elt_t = int
type set_t = elt_t list
let rec member elt set =

match set with
| [] -> false
| hd :: tl -> elt = hd || member elt tl

end

Figure 2.1: Structure for Integer Set

module type SET =
sig

type elt_t
type set_t
val member : elt_t -> set_t -> bool

end

Figure 2.2: Signature for Integer Set

signature SET for the structure IntSet as shown in Figure 2.2. The signature SET is defined
by the expression sig ... end, which contains a sequence of specifications for the components
in the IntSet. elt t and set t are defined as abstract types that hide an implementation
of corresponding type components. On the other hand, manifest types expose them. The
function member takes values of types elt t and set t, and returns a value of type bool.
The structure IntSet can be sealed with the SET by module IntSet’ = (IntSet : SET),
and the resulting module forgets the equivalence of set t = int list.

2.1.3 Functors

Functors are modules parameterized by modules and correspond to functions over modules,
which achieve reusability. Figure 2.3 shows an example of a functor that makes a module of
sets. The functor MakeSet is parameterized by the module Eq with the signature EQ. The
Eq contains the type t of an element of sets and the equality function eq on its elements.
Using the MakeSet, the structure IntSet in Figure 2.1 can be defined as shown in Figure
2.4. The structure IntEq contains the concrete components for integers, which is sealed
with EQ. By applying MakeSet to IntEq, we obtain the structure IntSet. If we need a set
of strings, we implement the structure StringEq that defines a type of an element and an
equality function for string, we only have to apply MakeSet to StringEq.

2.1.4 Generative Functors vs Applicative Functors

Two semantics for functors have been studied in the literature [17]. Generative functors are
standard in SML: for a functor F and a module M , applying F to M twice would generate
modules whose signatures are not compatible. A canonical example for the usefulness of

4



module type EQ =
sig

type t
val eq: t -> t -> bool

end

module MakeSet (Eq: EQ): SET =
struct

type elt_t = Eq.t
type set_t = elt_t list
let rec member elt set =

match set with
| [] -> false
| hd :: tl -> Eq.eq elt hd || member elt tl

end

Figure 2.3: Functor for Set

module IntEq: EQ =
struct

type t = int
let eq x y = Int.equal x y

end
module StringEq : EQ =

struct
type t = string
let eq x y = String .equal x y

end

module IntSet = MakeSet (IntEq)
module StringSet = MakeSet ( StringEq )

Figure 2.4: Integer Set and String Set by Functor

this semantics is the functor SymbolTable given in Figure 2.5, which is taken from Dreyer’s
thesis [17]. This example represents a symbol table implemented with a hash table. The
signature SYMBOL TABLE hides a concrete type of the symbol and an internal hash table,
and exposes two functions string2symbol and symbol2string to interconvert between
symbol and string. The generative functor SymbolTable makes a structure sealed with
SYMBOL TALBE in which string2symbol and symbol2string access to the internal hash ta-
ble table. The notable point lies in the implementation of symbol2string. The exception
Failure should never be raised while the symbol n is obtained by string2symbol in the
same structure, as the corresponding string can be found in the table. In generative seman-
tics, type checking can guarantee that no exceptions will be raised. For example, assuming
the structures ST1 and ST2 instantiated by the functor SymbolTable, since ST1.symbol
is not equal to ST2.symbol, a symbol obtained by ST2.string2symbol is never given to
ST1.symbol2string.

On the other hand, applicative functors are standard in OCaml: applying F to M twice

5



module type SYMBOL_TABLE =
sig

type symbol
val string2symbol : string -> symbol
val symbol2string : symbol -> string

end

module SymbolTable (): SYMBOL_TABLE =
struct

type symbol = int
let table =

(* allocate internal hash table *)
Hashtbl . create initial size

let string2symbol x =
(* lookup (or insert ) x *)

let symbol2string n =
match Hashtbl .find table n with
| Some x -> x
| None -> raise ( Failure "bad symbol ")

end

module ST1 = SymbolTable ()
module ST2 = SymbolTable ()

Figure 2.5: Symbol Table

would always generate modules whose signatures are compatible. The functor MakeSet in
Figure 2.3 is appropriate for applicative semantics. For example, assuming two structures
generated by the same functor application MakeSet(IntEq), since they have the same type
and equality function for integers, there is no reason to distinguish them.

Each style of functors has its own merit, and therefore the latest OCaml (and MetaOCaml)
have both.

2.1.5 First-Class Modules vs Second-Class Modules

The module language exists on a separate layer from the language for expressions. The
module language is second-class, while extensions for treating modules as values in the
language for expressions are called first-class modules. First-class modules allow us to
dynamically dispatch a module with conditional expressions and define a function that
takes a module and returns it. Functions over first-class modules have generative semantics
in the sense that a function returns a module with a fresh signature.

OCaml (MetaOCaml) supports both first- and second-class modules. Second-class mod-
ules are packed into first-class modules and unpacked from first-class modules. OCaml uses
the syntax (module m:S) to pack the module m with the signature S into a value of type
(module S), and the syntax (val m) unpacks m to a module. Components inside first-class
modules can only be accessed via unpacked modules.

6



2.2 Multi-Stage Programming
Multi-Stage Programming (MSP) [18] is a paradigm for runtime program generation in which
programmers can write a code generator to generate a program specialized into a particular
application domain and run-time parameters. In MSP, code means program fragments that
can be manipulated programmatically. MetaOCaml is an extension of OCaml that supports
MSP, which provides four multi-stage constructors below.

Generating code: < e >
Brackets < e > generate code of the expression e. When the type of e is τ , the type
of < e > is τ code.

Splicing code: ∼ e
Escape ∼ e exempts the expression e from the brackets. That is, the escape allows
code to be spliced into another code. For example, let x be < 1 + 2 >, an expression
<∼ x + 3 > is evaluated to < (1 + 2) + 3 >.

Executing code: run e
The expression run e compiles a value of the code e and executes it. For example,
the result of evaluating run < 1 + 2 > is 3. Precisely, MetaOCaml provides run as
the primitive Runcode.run.

Cross-Stage Persistence (CSP)
CSP (Cross-Stage Persistence) is a feature for embedding a present-stage value into a
future-stage code. MetaOCaml performs CSP for variables implicitly.

2.2.1 Example of Code Generation in MetaOCaml

We explain program optimization by MetaOCaml using an example of a power function that
calculates xn. Figure 2.6 shows the naive implementation of a power function in OCaml.
The comment shows the result of an expression returned by the OCaml (MetaOCaml) top-
level, where the type and the value are shown. Given integers n and x, the function power
makes n recursive calls to compute xn. Due to an overhead of function calls, the function
power is slower than an expression that calculates x ∗ x ∗ · · · ∗ x.

Figure 2.7 shows a program that generates a power function specialized to n and executes
it. The function spower is a staged function of power, which takes n of type int and x of
type int code, and generates code of type int code, where n is a static parameter and x
is a dynamic parameter. If n equals 0, spower generates code of 1, otherwise, the result of
the recursive call is spliced into code. The pow3 code builds code that calculates x ∗ x ∗ x
without recursive calls. Running this code using the primitive run yields a function pow3
of type int -> int. The execution of pow3 2 calculates 2 ∗ 2 ∗ 2 ∗ 1 internally, therefore
the performance problem is solved.

For the sake of readability, we use the multi-stage constructors without dots such as < e >
and ∼ e, but MetaOCaml in the real world uses constructors with dots such as . < e > .
and . ∼ e.

7



let rec power n x =
if n = 0 then 1
else x * ( power (n -1) x)

(* val power : int -> int -> int = <fun > *)

Figure 2.6: Power Function

let rec spower n x =
if n = 0 then <1>
else <˜x * ˜( spower (n -1) x)>

(* val spower : int -> int code -> int code = <fun > *)

let pow3_code = <fun x -> ˜( spower 3 <x>)>
(* val pow3_code : (int -> int) code =

<fun x_1 -> x_1 * (x_1 * (x_1 * 1))> *)

let pow3 = Runcode .run pow3_code
(* val pow3 : int -> int = <fun > *)

let result = pow3 2
(* val result : int = 8 *)

Figure 2.7: Generating Power Function Specialized to n = 3

8



Chapter 3

Module Generation

In this chapter, we state motivation for module generation and previous work. We also
illustrate problems in the previous work that we will address.

3.1 Motivation
Traditional MSP languages such as MetaOCaml do not support module generation. We
argue that module generation in MSP is an important issue for the following reasons. First,
modules obtained by applying functors involve indirections through a run-time represen-
tation. This indirection is a run-time overhead, which is especially serious in real-world
applications. For example, the unikernel that runs the MirageOS website contains a func-
tor application depth of up to 10 [11]. We can remove such indirections via generating
modules inlined. Second, in MSP, programmers are responsible for optimizations such as
inlining. As inlining does not always improve performance, it is important that program-
mers can control optimizations on modules. Also, programmers can use non-trivial domain
knowledge to generate aggressively optimized modules. We can also easily specialize ordi-
nary functions into multiple parameters via modules. Third, generating code of first-class
modules allows us to choose which code of a module is given to a functor depending on
run-time parameters.

3.2 Previous Work
Generating modules beyond terms in MSP has been started by Inoue et al. [15]. They pro-
posed an extension of core MetaOCaml that allows module generation and demonstrated
that the extension may eliminate overhead of functor applications. In addition, they pro-
posed a way to represent the extension in plain MetaOCaml by representing a module as a
polymorphic record. Unfortunately, they have not formulated the extension nor shown its
implementation.

Watanabe et al. [16] gave the language λ<M>, an extension of core MetaOCaml, that
allows generating and manipulating code of first-class modules. The language was imple-
mented by a translation to plain MetaOCaml. We explain their proposal and problems

9



let makeSet (eq: ( module EQ) code) =
<( struct

type elt_t = %( $eq.t)
type set_t = elt_t list
let rec member elt set =

match set with
| [] -> false
| hd :: tl -> ˜( $eq.eq) elt hd || member elt tl

end: SET)>

module IntSet = (val ( run_module
( makeSet <( module struct

type t = int
let eq = (=)

end: EQ) >)))

Figure 3.1: MakeSet Functor in λ<M>

using program examples.
Figure 3.1 shows a λ<M> program implementing the MakeSet and the IntSet shown in

Figure 2.3 and 2.4. The functor1 makeSet receives code of a module and returns a new code
of a module. λ<M> provides three new constructors $, % and run module to manipulate a
code of modules. The constructor $ extracts code of a component from code of a module.
In this example, $eq.eq means that extract the code of the function eq from the code of
the module eq. Thus, ∼($eq.eq) is replaced with the function (=), and the abstraction
overhead is eliminated. The constructor % is CSP for types, if $eq.t has a type of int code,
then %($eq.t) become a type of int. Although MetaOCaml implicitly performs CSP, their
language uses explicit notation. Finally, run module executes code of a module and returns
its module. In this example, run module receives a module of type (module SET) code and
returns a module of type (module SET). Since λ<M> uses first-class modules, packaging
(module ...) and unpackaging (val ...) are used to interconvert between first- and
second-class modules.

The main role of the translation from λ<M> to MetaOCaml is to eliminate outer brack-
ets of modules. Their idea is to turn code of a module into a module containing code.
Since a module has a record-like structure, they regarded that these two are isomorphic.
Figure 3.2 shows the makeSet and the IntSet translated from Figure 3.1. The type of
makeSet is translated from (module EQ) code -> (module SET) code to ((module EQ’)
-> (module SET’)) code, where the signature EQ’ is the result of translation from EQ and
SET’ is from SET. By the translation, brackets outside modules move to the body of value
components, while type components are kept intact. The constructors added to λ<M> are
eliminated by the translation, and we can execute the program shown in Figure 3.2 on
MetaOCaml.

Watanabe et al. measured performance against microbenchmarks, and demonstrated that
performance can be improved by generating code for modules.

1Since Watanabe et al. uses first-class modules, functors are represented by normal functions
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module type SET ’ =
sig

type elt_t
type set_t
val member : (elt_t -> set_t -> bool) code

end

module type EQ ’ =
sig

type t
val eq: (t -> t -> bool) code

end

let makeSet (eq: ( module EQ ’)) =
( struct

module Eq = (val eq)
type elt_t = Eq.t
type set_t = elt_t list
let member =

<let rec member elt set =
match set with
| [] -> false
| hd :: tl -> ˜(Eq.eq) elt hd || member elt tl

in member >
end: SET ’)

module IntSet = (val
( module struct

module S =
(val ( makeSet ( module struct

type t = int
let eq = <(=)>

end: EQ ’)))
type elt_t = S.elt_t
type set_t = S.set_t
let member = Runcode .run S. member

end: EQ))

Figure 3.2: MakeSet Functor Translated from λ<M> to MetaOCaml
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module type S =
sig

val x1: int
val x2: int
val x3: int

end

let m =
<( module struct

let x1 = 1 + 2
let x2 = x1 + x1
let x3 = x1 * x1

end : S)>

module type S’ =
sig

val x1: int code
val x2: int code
val x3: int code

end

let m =
( module struct

let x1 = <1 + 2>
let x2 = <let x1 = 1 + 2 in

x1+x1 >
let x3 = <let x1 = 1 + 2 in

let x2 = x1+x1 in
x1*x1 >

end : S’)

Figure 3.3: λ<M> Program With Dependencies (Left) and Its Translated Program (Right)

let f (m : ( module S) code) =
<( module struct

let y =
˜( $m.x3) + ˜( $m.x3)

end : T)>

let f (m : ( module S’)) =
( module struct

module M = (val m)
let y =

<˜(M.x3) + ˜(M.x3)>
end : T’)

Figure 3.4: λ<M> Program of Functor (Left) and Its Translated Program (Right)

3.2.1 Code Explosion Problem

Unfortunately, Watanabe et al.’s translation has a serious problem in that the size of gener-
ated code may increase exponentially. An illustrative example is Figure 3.3. The program
on the left-hand side is translated to the right-hand side. The problem here is that the
let-binding x2 is defined in the value component x3 even though it is not used. To avoid
free references in the result, Watanabe et al.’s translation inserts all let-binding up to the
i-th function into the i + 1-th binding. Hence, it inserts a total of n · (n− 1)/2 let-bindings
where n is the number of value components.

Furthermore, the situation becomes worse when applying a functor to the module m.
Let us consider defining the functor f as shown in Figure 3.4 and applying f to m. The
component y in the functor has two references to the component x3 in the module m passed
as an argument. T and T’ are appropriate signatures. Figure 3.5 shows code generated by
the functor application f m. The problem in this code is that the expression (let x1 = ...
in x1 * x1) is defined twice. An ideal code would define a let-binding for its expression
locally and dereference the let-bound variable twice. One might think that m.x3 should be
shared in the functor f using a let-binding, but its implementation is not natural in a case
that the part of m.x3 is a function like the function eq in the MakeSet example.
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# let module M = (val (f m)) in M.y;;
- : int code = <

(let x1 = 1 + 2 in let x2 = x1 + x1 in x1 * x1) +
(let x1 = 1 + 2 in let x2 = x1 + x1 in x1 * x1)>

Figure 3.5: Duplicated Code by Functor Application

<let x = 10 + 20 in
( module struct

let y = 1
end : T)>

let x = 10 + 20 in
( module struct

let y = <1>
end : T’)

Figure 3.6: Violating Semantics in Staging (Left Is Translated to Right)

In the worst case, the code size increases exponentially in the number of functor applica-
tions. In the example of Figure 3.5, as the component m.x3 was referenced twice, the size
of the generated code is (approximately) doubled. If the component y is referenced twice
in another functor, the size of the code would be (approximately) four times as large as the
original one. We want to eliminate the overhead from large applications which use many
functor applications, as the code-explosion problem becomes more serious. Generating such
a huge code takes a lot of time and space, and may cause compilation failures. Since the
code is generated before compilation, compiler optimization is not useful. The problems
above are summarized as follows.

• The size of the translated code is proportional to the square of the number of compo-
nents.

• Code duplication occurs when the same component is referenced multiple times from
outside of the module.

• The size of the generated code is proportional to the exponential in the number of
functor applications.

The next chapter will describe our translations that solve this problem.

3.2.2 Other Problems

We found a few other problems in Watanabe et al.’s study. First, their source language was
too liberal to be translated to plain MetaOCaml which does not allow code of modules.
Consider the example shown in Figure 3.6. The left-hand side is translated to the right-
hand side. T and T’ is appropriate signatures. The subexpression 10+20 is executed at the
future stage on the left, while it is executed at the present stage on the right, violating the
distinction of stages.

Second, their language did not allow abstract types and nested modules. These are
essential features for modular programming. As we mentioned in the previous chapter,
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abstract types conceal implementations and improve the maintainability of modules. On
the other hand, nested modules are needed to develop applications by assembling modules.

Third, since their language is based on first-class modules, the semantics of functors is
generative. As explained in Section 2.1.4, not only generative functors, but applicative
functors are also useful. A motivation for generating first-class modules with generative
functors and second-class modules with applicative functors will be described in the next
chapter.
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Chapter 4

Our Proposal

We introduce a refined translation for languages with module generation to solve the code-
explosion problem described in the previous chapter. Our translation performs dynamic let-
insertion, which allows code fragments to be shared among different components. Also, we
propose two languages implemented by our translation: λ<MA> and λ<MG>. The language
λ<MA> has functors with applicative semantics and allows generating code of second-class
modules. On the other hand, the language λ<MG> has generative functors and allows
generating code of first-class modules. In this chapter, we explain how our translation work
using examples, and describe designs and concrete examples of the languages. The formal
definitions of the languages and their translations will be given in the next chapter and
beyond.

4.1 Sharing Code Fragments Using let-Insertion
Let-insertion is a well-known technique for code sharing in program transformation (partial
evaluation, in particular) [19]. It can be implemented in various ways, and here we review
the two most relevant approaches for let-insertion.

4.1.1 Static let-Insertion by shift and reset

The first approach uses the delimited-control operators shift and reset [20], which are avail-
able in Scheme/Racket, SML, OCaml, Scala, and other modern programming languages. In
OCaml and MetaOCaml, they are implemented as an external library [21]. In this approach,
a let expression is packaged with shift, and the destination for let-insertion is marked by
reset. The let expression is inserted at runtime. Note that the destination of let-insertion
is determined statically in this approach.

The let-insertion technique via shift and reset has been studied in program generation
[22]. Unfortunately, the technique is insufficient to solve the problem in Watanabe et al.’s
translation. Since the translator does not know (before code generation) how many times
a functor is applied to modules, it is hard to find the optimal destination for let-insertion
statically.
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Let us investigate why a static let-insertion does not solve the code-duplication problem.
Consider the following program written in λ<M>:

let mcod0 = <( module struct
let x1 = 10 + 20
let x2 = x1 + x1

end : S)>

where S is a suitable signature. Watanabe et al.’s translation removes code of modules, and
the above code is translated to:

let mcod0 = ( module struct
let x1 = <10 + 20>
let x2 = <˜x1 + ˜x1 >

end : S ’)

But the component x2 alone does not make sense because of free occurrences of x1, and we
need to supply the value of x1 when we use x2. Instead of naively inlining the code for x1
to get (10+20)+(10+20), we insert a let expression to obtain:

let mcod0 = ( module struct
let x1 = <10 + 20>
let x2 = <let t = 10 + 20 in t + t>

end : S ’)

which is a duplication-free code. So far, so good.
As the next step, we apply the following functor (function) f to the mcod0:

let f (mcod: ( module S’)) =
( module struct

module M = (val mcod)
let y = <˜(M.x1) + ˜(M.x2)>

end : T’)

where T’ is an appropriate signature, and note that the component y refers to two com-
ponents x1 and x2 (as opposed to the example in Figure 3.4). The result of a functor
application f mcod0 is the following module:

( module struct
let y = <(10 + 20) + (let t = 10 + 20 in t + t)>

end : T ’)

For the sake of simplicity, nested module M is omitted. The final result still contains the code
10+20 twice, which shows the static let-insertion does not completely solve the problem.
An ideal result would be the following.

( module struct
let y = <let t = 10 + 20 in t + (t + t)>

end : T ’)

We can expect that the last result can be obtained by let-insertion, but the destination of
let-insertion is the outermost position of nested functor applications. In general, we may
want to apply functors to modules multiple times, and the ideal destination may be quite
distant from the original position of a let expression.
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4.1.2 Dynamic let-Insertion by genlet

The second way uses the genlet primitive [23] in MetaOCaml1 which performs let-insertion.
Unlike let-insertion via shift and reset, let-insertion by genlet works in code generators
only. The notable point in genlet is that a program need not specify the destination of
let-insertion, which is determined dynamically when the code is actually generated.

Let us consider the following example using genlet:
let x = genlet <10 + 20> in <˜x + ˜x>

The genlet primitive is a normal function, which generates a fresh future-stage variable and
a let binding that binds it to the argument of genlet, and returns the code that refers to
this variable. The generated let binding is inserted somewhere in the code, which is decided
dynamically. An intermediate term in this execution is the following.

<let t = 10 + 20 in
˜( let x = <t> in <˜x + ˜x>)>

which evaluates to the code below.
<let t = 10 + 20 in t + t>

The resulting code has no duplicated occurrences of 10+20.
The destination of let-insertion by genlet is the outermost location that causes no scope-

extrusion problem, namely, free variables in the argument of genlet should not go beyond
their binders. In summary, genlet is useful to avoid code duplication in program generation.

The next question is whether genlet is useful for module generation, and how we can solve
the code-duplication problem with modules. Actually, our solution is very simple; for each
value component in a module, we insert the genlet primitive at the topmost position of the
right-hand side of a value component, and that’s all. For instance, we rewrite the previous
module mcod0 to the following one:

let mcod1 = ( module struct
let x1 = genlet <10 + 20>
let x2 = genlet <˜x1 + ˜x1 >

end : S ’)

where genlet is used twice. Other parts of the program are kept intact.
Although simple, the reason why our solution works is rather complicated. Let us consider

the execution of mcod1 alone. The right-hand side of each value component of a module is
evaluated one by one, and the function genlet is called twice. For the component x1, we get
<let t1 = 10 + 20 in t1> as its value. The result of the execution of the component x2
is rather unexpected, as it returns <let t1 = 10 + 20 in let t2 = t1 + t1 in = t2>.
This is quite different from the result of a simple-minded computation for the x2, which is
<let t2 = (let t1 = 10 + 20 in t1) + (let t1 = 10 + 20 in t1) in t2>.

The reason why we got non-duplicating code for x2 is somewhat complicated. 2 For the

1Available in BER MetaOCaml version N107 and later.
2Our explanation here is essentially due to Kiselyov’s explanation for genlet, available from the BER

MetaOCaml repository on GitHub, https://github.com/metaocaml/ber-metaocaml/blob/ber-n111/
ber-metaocaml-111/patches/trx.ml.
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x1 component, we get <let t1 = 10 + 20 in t1> as its value, which is not surprising.
When we evaluate genlet <e>, we do not immediately get <let t = e in ...t>; rather,
it returns an internal data structure (a triple) consisting of a set of free variables, the
body <e>, and a list of let bindings to be inserted in future. In other words, genlet <e> is
evaluated only partially and the let-insertion is delayed, similar to lazy evaluation. When we
retrieve the value of the triple at the top level (for instance, the value is printed or compiled),
let bindings in this triple are inserted at the topmost positions which do not cause the scope-
extrusion problem. Coming back to the evaluation of the expression genlet <˜x1 + ˜x1>,
the value of x1 is a triple which contains potential dynamic let-insertion. Hence, there are
two nested dynamic let-insertion, and its result has nested let-bindings such as <let t1 =
10 + 20 in let t2 = t1 + t1 in ...>.

Our finding in this thesis is the above machinery of genlet works as well in the presence
of modules and functors. To see it, we consider the evaluation of the expression f mcod1,
which simulates a functor application using first-class modules. When we evaluate the
expression, again the dynamic let-insertion triggered by genlet in mcod1 is delayed until the
result of the whole expression is printed. When we print it, dynamic let-insertion by two
genlet is actually performed, and we get the following ideal code as nested let bindings:

( module struct
let y = <let t1 = 10 + 20 in let t2 = t1 + t1 in t1 + t2 >

end : T ’)

Since let bindings for t1 and t2 are nested, it is clear that let insertion was performed after
the evaluation of mcod1.

This feature of genlet has been considered useful in code generation, but as far as we
know, it has not been studied whether genlet can work beyond module boundaries, until
the work presented in this thesis.

4.2 λ<MA>: Extension to Applicative Functors and Second-
Class Modules

We propose a language λ<MA> for generating and manipulating code of second-class mod-
ules in applicative semantics. The language λ<MA> is implemented by a translation using
genlet presented in the previous section. Programs written in λ<MA> are translated to
plain MetaOCaml and are executed on MetaOCaml. This section introduces the language
λ<MA> through an example of MakeSet. Then, we motivate the combination of applicative
functors and module generation.

To manipulate and generate code of modules, λ<MA> newly provides two multi-stage
constructors in addition to the constructors added to Watanabe et al.’s language. To illus-
trate these constructors, we first give an example of the MakeSet program written in λ<MA>

(Figure 4.1). Following Watanabe et al.’s language, our λ<MA> provides a constructor $
to extract code of a component from code of a module and a constructor Runmod to run
code of a module. On the other hand, CSP for types (%) is implicitly performed. This
choice is based on the design that our language does not treat type generation. The key
point in λ<MA> is to distinguish code of modules from code of core expressions in order
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module MakeSet =
functor (Eq : EQ mcod) ->
⟨⟨ ( struct

type elt_t = $Eq.t
type set_t = elt_t list
let rec member elt set =

match set with
| [] -> false
| hd :: tl -> ˜( $Eq.eq) elt hd || member elt tl

end: SET) ⟩⟩

module IntEq =
⟨⟨ ( struct

type t = int
let eq = (=)

end: EQ) ⟩⟩
module IntSet = Runmod ( MakeSet (IntEq): SET mcod)

Figure 4.1: MakeSet Functor in λ<MA>

module MakeSet =
functor (Eq : EQ ’) ->

( struct
type elt_t = Eq.t
type set_t = elt_t list
let member = genlet

<let rec member elt set =
match set with
| [] -> false
| hd :: tl -> ˜(Eq.eq) elt hd || member elt tl

in member >
end: SET ’)

module IntEq =
( struct

type t = int
let eq = genlet <(=)>

end: EQ ’)
module IntSet =

struct
module X = MakeSet (IntEq)
type elt_t = X.elt_t
type set_t = X.set_t
let member = Runcode .run X. member

end

Figure 4.2: MakeSet Functor Translated from λ<MA> to MetaOCaml
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to avoid expressions that cannot be translated as described in Section 3.2.2. To do so, we
introduce a type mcod, brackets ⟨⟨⟩⟩, and an escape ≈, for code of modules. For example,
assuming a structure m has the type M , ⟨⟨m⟩⟩ has the type M mcod. Furthermore, if X
is bound to ⟨⟨m⟩⟩, then X can be spliced into other code of a module such as ⟨⟨.. ≈ X ..⟩⟩.
Continuing with the example in Figure 4.1, MakeSet has the type functor(Eq: EQ mcod)
-> SET mcod, and IntEq has the type SET mcod. The result of the functor application
MakeSet(IntEq) is given to Runmod, then IntSet has the type SET.

Figure 4.2 shows a program translated from Figure 4.1, where the definitions of SET’
and EQ’ are omitted because they are the same as in Figure 3.2. Through the translation,
constructors for module generation are eliminated and genlet is inserted into the body of
the component member.

Next, we explain the usefulness of module generation with applicative functors. We bor-
row an example from Leroy’s paper [24]. The example is a functor MakeDict implementing
dictionaries without code generation:

module type DICT =
sig

type key
type ’a dict
val empty: ’a dict
val add: key -> ’a -> ’a dict -> ’a dict
val find: key -> ’a dict -> ’a

end
module MakeDict =

functor (Key: EQ) ->
( struct

type key = Key.t
type ’a dict = (key * ’a) list
...

end: DICT)

where a type of keys of a dictionary is parameterized. Then consider extending this functor
with the operation domain that returns a set of keys of a dictionary. The simplest way is to
make a module for the set of keys inside the functor MakeDict using the functor MakeSet:

module MakeDict =
functor (Key: EQ) ->

( struct
...
module KeySet = MakeSet (Key)
let domain dict = ... KeySet . member ...

end: DICT)

To eliminate abstraction overhead of functor applications, we can rewrite the above program
in the language λ<MA>.
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module MakeDict =
functor (Key: EQ mcod) ->
⟨⟨ ( struct

...
module KeySet = ≈ ( MakeSet (Key))
let domain dict = ... KeySet . member ...

end: DICT) ⟩⟩

Suppose functors are given the generative semantics, then the set of keys returned from
domain cannot be used with other sets obtained by applying MakeSet to the same module
for an element type. The types of their sets are incompatible. For example, we consider
a functor MakePrioQueue implementing priority queues that use sets in the same way as
MakeDict.

module MakePrioQueue =
functor (Elt: EQ mcod) ->
⟨⟨ ( struct

type elt = Elt.t
type queue = elt list
...
module EltSet = ≈ ( MakeSet (Elt))
let contents queue =

(* return a set of elements of the queue *)
...

end: PRIOQUEUE ) ⟩⟩

Then, we give the module IntEq to the two functors:
module IntDict = Runmod ( MakeDict (IntEq): DICT mcod)
module IntPrioQueue = Runmod ( MakePrioQueue (IntEq): PRIOQUEUE

mcod)

IntDict and IntPrioQueue contain the same set of integers, but the types of their sets are
not compatible. Therefore, the following expression causes a type error.

IntDict . domain d = IntPrioQueue . contents q

A possible solution to this problem is to hoist MakeSet from MakeDict and MakePrioQueue,
and to share a functor application MakeSet(IntEq). In this case, MakeDict and MakePrioQueue
take an extra argument for the set hoisted out, in addition to the argument Key (or Elt).
Unfortunately, this solution has some problems:

• All programs that use MakeDict or MakePrioQueue require modifications to the func-
tor arguments, even if some programs do not use the operations on the sets.

• Hoisting the functor application MakeSet(IntEq) to a common point requires a non-
local program transformation.

In applicative semantics, there is no above problem. Therefore, we argue that applicative
functors are useful for module generation.

Besides the above merit, since applicative functors and second-class modules are common
in OCaml programming, existing OCaml programs can be staged in λ<MA> with little cost.
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However, module generation in λ<MA> has some demerits compared with λ<MG> intro-
duced in the next section. Because dependencies between second-class modules are stati-
cally solved, we cannot choose at runtime which modules to be specialized. Hence, there is
trade-off between the two languages.

4.3 λ<MG>: Extension to Generative Functors and First-Class
Modules

We also propose a language λ<MG> for generating and manipulating code of first-class
modules in generative semantics, which is a refined version of Watanabe et al’s λ<M>. The
most useful aspect of λ<MG> is that a program can choose code of modules. Figure 4.3
shows a program where an implementation of a logger is dynamically dispatched to the
main application depending on a command-line argument. In this example, there are only
two choices: consoleLogger for printing logs to a console, or fileLogger for writing logs
to a file. For now, we may be able to generate the main application inlined for all possible
combinations at compile time, such as consoleLogApp and fileLogApp.

However, in generally, applications have many runtime parameters such as command-line
arguments. Due to combinatorial explosions, it is difficult to generate them at compile time
for all possible combinations. Hence, generating code of modules at runtime is useful for
specializing applications with many parameters.

Another aspect is that abstraction overhead can be eliminated from programs suitable
for generative functors such as the example of SymbolTable described in Section 2.1.4.
Functors represented as ordinary functions return modules with fresh abstract types.

λ<MG> provides two multi-stage constructors for modules in addition to Watanabe et al’s
$ and run module. One is the type mcod for code of modules. The other is brackets ⟨⟨⟩⟩ for
modules. Note that escapes for modules are not introduced because the syntax becomes too
complex. Since traditional MetaOCaml can generate code of expressions, one might think
that a language for generating first-class modules can be implemented as a lightweight
extension to MetaOCaml. Unfortunately, at least in the Watanabe et al.’s translation (and
ours), code of ordinary expressions and code of modules have different semantics, so they
need to be distinguished.

Figure 4.4 shows MakeSet program written in λ<MG>. This program is the same as the
program in Figure 3.1 except for the code type and brackets for modules. Our translation
rewrites this program to the program shown in Figure 4.5. The translated program is the
same as the one in Figure 3.2 except for genlet.
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module type LOG =
sig

val info: string -> unit
val error: string -> unit

end
let consoleLogger =
⟨⟨ ( module struct

let print level msg =
Printf . printf "[%s] %s\n" level msg

let info msg = print "INFO" msg
let error msg = print "ERROR " msg

end: LOG) ⟩⟩
let fileLogger =
⟨⟨ ( module struct

...
end: LOG) ⟩⟩

let makeApp ( logger : ( module LOG) mcod) =
⟨⟨ ( module struct

let start () =
˜( $logger .info) " Starting app";
...

end: APP) ⟩⟩

let () =
let logger =

if Sys.argv .(1) = " console " then consoleLogger
else fileLogger in

let app = makeApp logger in
let module App = (val ( run_module app: APP)) in
App. start () ;;

Figure 4.3: Choosing Logger Module Depending on Runtime Options
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let makeSet (eq: ( module EQ) mcod) =
⟨⟨ ( struct

type elt_t = $eq.t
type set_t = elt_t list
let rec member elt set =

match set with
| [] -> false
| hd :: tl -> ˜( $eq.eq) elt hd || member elt tl

end: SET) ⟩⟩

module IntSet = (val ( run_module
( makeSet ⟨⟨ ( module struct

type t = int
let eq = (=)

end: EQ) ⟩⟩ )))

Figure 4.4: MakeSet Functor in λ<MG>

let makeSet (eq: ( module EQ ’)) =
( struct

module Eq = (val eq)
type elt_t = Eq.t
type set_t = elt_t list
let member = genlet

<let rec member elt set =
match set with
| [] -> false
| hd :: tl -> ˜(Eq.eq) elt hd || member elt tl

in member >
end: SET ’)

module IntSet = (val
( module struct

module S =
(val ( makeSet ( module struct

type t = int
let eq = genlet <(=)>

end: EQ ’)))
type elt_t = S.elt_t
type set_t = S.set_t
let member = Runcode .run S. member

end: EQ))

Figure 4.5: MakeSet Functor Translated from λ<MG> to MetaOCaml
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Chapter 5

Proposed Langugae: λ<MA>

Our first language λ<MA> is a two-stage programming language for generating and manip-
ulating code of second-class modules with applicative functors, which is an extension of core
MetaOCaml. It includes simply typed lambda calculus with let expressions, second-class
modules, and multi-stage constructors for code generation. The design of the language
is based on Leroy’s applicative-functor calculus [24], the classic type system λ◦ [25], and
Watanabe et al.’s calculus [16]. We confine ourselves to a minimal language to express our
results. The language λ<MA> is implementad by a translation to MetaOCaml.

In this chapter, we first define the syntax and type system of λ<MA>. Then, we define
the translation from λ<MA> to MetaOCaml and prove type preservation of the translation.

5.1 Syntax
Figure 5.1 defines the syntax for terms. We use metavariables m for module expressions,
s for a sequence of structure components, c for structure components, p for access paths,
e for core expressions, and P for programs. Also, x, t, and X are names (for value, type,
and module, respectively), and xi, ti, and Xi are identifiers (for value, type, and module,
respectively). All identifiers (e.g. xi) have a name part (x) and a stamp part (i). The stamp
exists to distinguish identifiers with the same name, which can be replaced by α-conversion.
In contrast, α-conversion does not change the name because components of modules are
referenced by names from outside the modules, as in Xi.x. Duplicate component names
are prohibited by typing rules (see the next section). In this language, base types and
primitives are unspecified, but it is easy to introduce them. Complete programs P are
sequence of structure components. For simplicity, we sometimes omit prog and end in
program examples.

The syntax for terms is mostly standard except the following. We introduce brackets ⟨⟨⟩⟩,
an escape ≈, and Runmod, for module expressions. Because the module expressions are
second-class and exist on a different layer than the core expressions, the multi-stage con-
structors should be distinguished. In contrast, <>, ∼, and run are the standard multi-stage
constructors for the core expressions. Following Watanabe et al.’s calculus, we introduce the
$ constructor to extract a component contained in code of a module as code. For example,
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Module expressions : m ::= Xi | p.X | struct s end | (m : M) | m (p)
| functor (Xi : M)→ m

| ⟨⟨m⟩⟩ | ≈ m | Runmod (m : M)
| $p.X

Structures : s ::= ϵ | c s

Structure components : c ::= let xi : τ = e | type ti = τ |module Xi = m

Access paths : p ::= Xi | p.X | p1(p2) | $p.X

Core expressions : e ::= xi | p.x

| fun xi → e | e e | let xi = e in e

| < e > | ∼ e | run e

| $p.x

Program : P ::= prog s end

Figure 5.1: Syntax for terms

Module types : M ::= sig S end | functor (Xi : M1)→M2

|M mcod
Signatures : S ::= ϵ | C S

Signature components : C ::= val xi : τ | type ti | type ti = τ |module Xi : M

Core types : τ ::= ti | p.t

| τ → τ

| τ code
| $p.t

Figure 5.2: Syntax for types

E ::= ϵ | C l, E

∆ ::= ϵ | C l, ∆

Figure 5.3: Typing environments
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$p.x extracts the value component x as code from code of a module accessed with the path
p, and its code can be spliced into other code. $p.x reads $(p).x. To simplify the syntax, a
functor definition and a restriction by a signature, are defined by functor (Xi : M) → m
and (m : M), respectively. They are unfamiliar syntax for OCaml users, but OCaml (and
MetaOCaml) supports them. The key to applicative functors is that the access paths include
a path application p1(p2), which is needed to test type equality among modules obtained by
functor applications. Along with this, the syntax of a functor application m(p) is restricted
to a path argument only. For more details, see Section 5.2.5.

Figure 5.2 defines the syntax for types. We use metavariables M for module types, S for
a sequence of signature components, C for signature components, and τ for types of core
expressions. We introduce the type M mcod to distinguish code of modules from code of
core expressions. The signature components include an abstract type component (type ti)
and a manifest type component (type ti = τ). The $p.t refers to the type component
t within code of a module specified with the path p. Our language does not provide an
explicit syntax for CSP (Cross-Stage Persistence) for types in contrast to Watanabe et al’s
language. This choice follows our principle of not generating types.

5.2 Type System

5.2.1 Typing Environments

Figure 5.3 shows typing environments of the language λ<MA>. The typing environments
E and ∆ are both a sequence of signature components that are annotated with a level
(stage) l. Since λ<MA> is a two-stage language, l is either 0 or 1. ∆ is a subset of E, which
contains bindings for level-1 value components and level-1 module components. ∆ is used
in translation, not for typing in the language.

5.2.2 Typing Judgements

Typing judgments are also annotated by the level l. For example, E; ∆ ⊢l means a typing
judgment at the level l under the environment E and ∆. At the level l, only the elements
annotated with l in the environment E may be dereferenced.

5.2.3 Well-Typedness

We define that a program P is well-typed if ⊢ P wt is derivable. WT-Prog is a rule for
well-typedness of programs. The stage level starts from 0. Both typing environments are
empty.

⊢ P wt

ϕ; ϕ ⊢0 struct s end : sig S end (WT-Prog)⊢ prog s end wt

27



5.2.4 Well-Formedness

Our language λ<MA> requires that all component names within each module are mutually
distinct. We define types that satisfy such property as well-formed (wf). For instance, a
signature sig type t type t end contains components with the same name, so it is not
well-formed. In this section, we define the well-formedness rules.

E; ∆ ⊢l M wf means that the module type M is well-formed at level l under the
environments E and ∆. WF-Sig is a rule for signatures, which defines a signature as well-
formed if all signature components are well-formed. WF-Functor and WF-ModCod are
rules for functors and code of modules, respectively.

E; ∆ ⊢l M wf

E; ∆ ⊢l S wf (WF-Sig)
E; ∆ ⊢l sig S end wf

E; ∆ ⊢0 M1 wf E, (module Xi : M1)0; ∆ ⊢0 M2 wf
(WF-Functor)

E; ∆ ⊢0 functor (Xi : M1)→M2 wf

E; ∆ ⊢0 M wf (WF-ModCod)
E; ∆ ⊢0 M mcod wf

Rules for signature components are shown below. WF-SigComponents requires all sig-
nature components are well-formed. WF-Val is a rule for value components, WF-TypeAbs
is for abstract type components, WF-Type is for manifest type components, and WF-Mod
is for module components. We write Dom(E) for the set of identifiers bound in the envi-
ronment E. The conditions in the form of xl

i /∈ Dom(E) are used to guarantee that each
component name is distinct. We may omit rules with the abstract type component when
we can infer from rules with the manifest type components.

E; ∆ ⊢l S wf

(WF-Empty)
E; ∆ ⊢l ϵ wf

E; ∆ ⊢l C wf E, (C)l; ∆ ⊢l S wf
(WF-SigComponents)

E; ∆ ⊢l C S wf

E; ∆ ⊢l C wf

E; ∆ ⊢l τ wf xi
l /∈ Dom(E)

(WF-Val)
E; ∆ ⊢l val xi : τ wf

ti
l /∈ Dom(E)

(WF-TypeAbs)
E; ∆ ⊢l type ti wf
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ti
l /∈ Dom(E)

(WF-Type)
E; ∆ ⊢l type ti = τ wf

E; ∆ ⊢l M wf Xi
l /∈ Dom(E)

(WF-Mod)
E; ∆ ⊢l module Xi : M wf

Rules for the core type τ are shown below. T-Var for variables and T-Arr for arrow
types are straightforward. T-Dot is a rule for dereferencing a component in a module,
while T-DotCode is for a component in code of a module. T-VarAbs, T-DotAbs, and
T-DotCodeAbs are rules for abstract type components. A rule for code types is T-Code.
Since λ<MA> is a two-stage multistage language, code types can only appear at level 0.
CSPing for types is performed implicitly using T-Csp.

E; ∆ ⊢l τ wf

(type ti = τ)l ∈ E
(T-Var)

E; ∆ ⊢l ti wf

(type ti)l ∈ E
(T-VarAbs)

E; ∆ ⊢l ti wf

E; ∆ ⊢l p : sig S1 (type ti = τ) S2 end
(T-Dot)

E; ∆ ⊢l p.t wf

E; ∆ ⊢l p : sig S1 (type ti) S2 end
(T-DotAbs)

E; ∆ ⊢l p.t wf

E; ∆ ⊢0 p : (sig S1 (type ti = τ) S2 end) mcod
(T-DotCode)

E; ∆ ⊢0 $p.t wf

E; ∆ ⊢0 p : (sig S1 (type ti) S2 end) mcod
(T-DotCodeAbs)

E; ∆ ⊢0 $p.t wf

E; ∆ ⊢l τ1 wf E; ∆ ⊢l τ2 wf (T-Arr)
E; ∆ ⊢l τ1 → τ2 wf

E; ∆ ⊢0 τ wf (T-Code)
E; ∆ ⊢0 τ code wf

E; ∆ ⊢0 τ wf (T-Csp)
E; ∆ ⊢1 τ wf
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5.2.5 Typing Rules

This section defines typing rules of λ<MA>. First, we describe the typing rules for structure
components. As with the well-formedness rules, these rules require component names to
be unique at each level. The environment ∆ is updated in S-Let1 and S-Mod1. Because
our translation moves brackets from outside of a module to inside components, level-1 value
components and level-1 module components are exposed at level 0 after the translation.
Hence, we accumulate those components to ∆ and use it in translation time.

E; ∆ ⊢l s : S

(S-Empty)
E; ∆ ⊢l ϵ : ϵ

E; ∆ ⊢0 e : τ xi
0 /∈ Dom(E) E, (val xi : τ)0; ∆ ⊢0 s : S

(S-Let0)
E; ∆ ⊢0 (let xi : τ = e) s : (val xi : τ) S

E; ∆ ⊢1 e : τ xi
1 /∈ Dom(E) E, (val xi : τ)1; ∆, (val xi : τ)1 ⊢1 s : S

(S-Let1)
E; ∆ ⊢1 (let xi : τ = e) s : (val xi : τ) S

ti
l /∈ Dom(E) E, (type ti = τ)l; ∆ ⊢l s : S

(S-Type)
E; ∆ ⊢l (type ti = τ) s : (type ti = τ) S

E; ∆ ⊢0 m : M E; ∆ ⊢0 M wf Xi
0 /∈ Dom(E)

E, (module Xi : M)0; ∆ ⊢0 s : S
(S-Mod0)

E; ∆ ⊢0 (module Xi = m) s : (module Xi : M) S

E; ∆ ⊢1 m : M E; ∆ ⊢1 M wf Xi
1 /∈ Dom(E)

E, (module Xi : M)1; ∆, (module Xi : M)1 ⊢1 s : S
(S-Mod1)

E; ∆ ⊢1 (module Xi = m) s : (module Xi : M) S

Second, we describe the typing rules for module expressions. M-Var is a rule for module
variables. M-Dot is a rule for module components in a module, and M-DotCode is for
module components in code of a module. In these two rules, the substitution is performed in
order to avoid free occurrences of type variables. We call it substitution for type variables,
which is defined in Section 5.2.6. We write Dom(S) for the set of identifiers defined in
the signature S. M-Str is for structure expressions and M-Sig is for a restriction by a
signature. To avoid code of functors, M-Functor for functor definitions and M-App for
functor applications are defined at level 0 only. M-App requires a path in the functor
argument. In the semantics of applicative, the result type of a functor application may
include path applications such as sig type t = F(X).t end, but the syntax does not
allow the X to be a module expression. Subtyping for modules is defined by M-Subtyping,
and its rules are defined later. We introduce multi-stage constructors for modules M-Cod,
M-Esc, and M-Runmod. M-Cod is a rule for code of modules, for a module expression
m of type M , ⟨⟨m⟩⟩ has a type of M mcod. An escape for code of a module is typed by
M-Esc, and Runmod is typed by M-Runmod. M-Strengthening is an important rule
for module type equivalences, which enriches the module type M with the path p.
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E; ∆ ⊢l m : M

(module Xi : M)l ∈ E
(M-Var)

E; ∆ ⊢l Xi : M

E; ∆ ⊢l p : sig S1 (module Xi : M) S2 end
(M-Dot)

E; ∆ ⊢l p.X : M [zj ← p.z | zj ∈ Dom(S1)]

E; ∆ ⊢0 p : (sig S1 (module Xi : M) S2 end) mcod
(M-DotCode)

E; ∆ ⊢0 $p.X : M [zj ← $p.z | zj ∈ Dom(S1)] mcod

E; ∆ ⊢l s : S (M-Str)
E; ∆ ⊢l struct s end : sig S end

E; ∆ ⊢l M wf E; ∆ ⊢l m : M (M-Sig)
E; ∆ ⊢l (m : M) : M

Xi
0 /∈ Dom(E) E, (module Xi : M2)0; ∆ ⊢0 m : M1 (M-Functor)

E; ∆ ⊢0 functor (Xi : M2)→ m : functor (Xi : M2)→M1

E; ∆ ⊢0 m : functor (Xi : M2)→M1 E; ∆ ⊢0 p : M2 (M-App)
E; ∆ ⊢0 m (p) : M1[Xi ← p]

E; ∆ ⊢l m : M1 E; ∆ ⊢l M1 <: M2 (M-Subtyping)
E; ∆ ⊢l m : M2

E; ∆ ⊢1 m : M (M-Cod)
E; ∆ ⊢0 ⟨⟨m⟩⟩ : M mcod

E; ∆ ⊢0 m : M mcod (M-Esc)
E; ∆ ⊢1 ≈ m : M

E; ∆ ⊢0 m : M mcod (M-Runmod)
E; ∆ ⊢0 Runmod (m : M mcod) : M

E; ∆ ⊢0 p : M (M-Strengthening)
E; ∆ ⊢0 p : M/p0

The strengthening operation replaces abstract type components with manifest type com-
ponents with a path. For instance, assuming a module A has type sig type t end, this
operation translates its type to sig type t = A.t end. Also, assuming the result type
of functor application (path application) F(A) is sig type t end, its strengthened type is
sig type t = F(A).t end. Intuitively, this operation gives a module type an identity. We
use a notation M/pl, which is based on Leroy’s style [24], to strengthen the module type
M with the path p at the level l. The level l in M/pl is for the operation / rather than the
path p, which plays the role of a flag that indicates whether it is inside mcod. Its precise
definition is given below.
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(sig S end)/pl = sig S/pl end
(functor (Xi : M1)→M2)/p0 = functor (Xi : M1)→M2/(p(Xi))0

(M mcod)/p0 = M/p1 mcod
ϵ/pl = ϵ

((val xi : τ) S)/pl = (val xi : τ) S/pl

((type ti) S)/p0 = (type ti = p.t) S/p0

((type ti) S)/p1 = (type ti = $p.t) S/p1

((type ti = τ) S)/pl = (type ti = τ) S/pl

((module Xi : M) S)/p0 = (module Xi : M/(p.X)0) S/p0

((module Xi : M) S)/p1 = (module Xi : M/($p.X)1) S/p1

Then, we describe the typing rules for core expressions. E-Var is a rule for value variables.
E-Dot and E-DotCode are rules for dereferencing value components within a module and
code of a module, respectively. The substitution for type variables in these two rules is de-
fined in Section 5.2.6. We briefly explain why the substitution is necessary. Considering a
signature sig type t val x: t -> t end is bound to a path p, an expression p.x should
have the type p.t -> p.t because the t is free outside the module. In E-DotCode, if p
has a module type sig type t val x: t -> t end mcod, then $p.x has ($p.t -> $p.t)
code. E-Fun, E-App, and E-Let rules are the same as the usual rules for function ab-
stractions, function applications, and let expressions, respectively, except for the annotation
of the level. E-Code, E-Esc, and E-Run are rules for multi-stage constructors for core
expressions. E-Subsumption is a subsumption rule for core expressions.

E; ∆ ⊢l e : τ

(val xi : τ)l ∈ E
(E-Var)

E; ∆ ⊢l xi : τ

E; ∆ ⊢l p : sig S1 (val xi : τ) S2 end
(E-Dot)

E; ∆ ⊢l p.x : τ [zj ← p.z | zj ∈ Dom(S1)]

E; ∆ ⊢0 p : (sig S1 (val xi : τ) S2 end) mcod
(E-DotCode)

E; ∆ ⊢0 $p.x : τ [zj ← $p.z | zj ∈ Dom(S1)] code

E; ∆ ⊢l τ1 wf E, (val xi : τ1)l; ∆ ⊢l e : τ2 (E-Fun)
E; ∆ ⊢l fun xi → e : τ1 → τ2

E; ∆ ⊢l e1 : τ1 → τ2 E; ∆ ⊢l e2 : τ1 (E-App)
E; ∆ ⊢l e1 e2 : τ2
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E; ∆ ⊢l e1 : τ1 E, (val xi : τ1)l; ∆ ⊢l e2 : τ2 (E-Let)
E; ∆ ⊢l let xi = e1 in e2 : τ2

E; ∆ ⊢1 e : τ (E-Code)
E; ∆ ⊢0 < e > : τ code

E; ∆ ⊢0 e : τ code (E-Esc)
E; ∆ ⊢1 ∼ e : τ

E; ∆ ⊢0 e : τ code (E-Run)
E; ∆ ⊢0 run e : τ

E; ∆ ⊢l e : τ1 E; ∆ ⊢l τ1 ≡ τ2 (E-Subsumption)
E; ∆ ⊢l e : τ2

The subtyping rules for modules are the same as Leroy’s calculus, except for the following.
First, our typing judgment is annotated with a level. Second, subtyping for functors is
defined only at level 0. Finally, the subtyping rule Sub-Mcod is added for code of modules.
The definitions are shown below.

E; ∆ ⊢l M1 <: M2

σ : {1...m} → {1...n} E; Cl
1 · · ·Cl

n ⊢l Cσ(i) <: C ′
i for i = 1 · · ·m

(Sub-Sig)
E; ∆ ⊢l sig C1 · · ·Cn end <: sig C ′

1 · · ·C ′
m end

E; ∆ ⊢0 M2 <: M1 E, (module Yj : M2)0; ∆ ⊢0 M ′
1[Xi ← Yj ] <: M ′

2 (Sub-Functor)
E; ∆ ⊢0 functor (Xi : M1)→M ′

1 <: functor (Yj : M2)→M ′
2

E; ∆ ⊢1 M1 <: M2 (Sub-Mcod)
E; ∆ ⊢0 M1 mcod <: M2 mcod

E; ∆ ⊢l τ1 ≡ τ2 (Sub-Val)
E; ∆ ⊢l val xi : τ1 <: val xi : τ2

E; ∆ ⊢l M1 <: M2 (Sub-Mod)
E; ∆ ⊢l module Xi : M1 <: module Xi : M2

(Sub-AbstractAbstract)
E; ∆ ⊢l type ti <: type ti

(Sub-ManifestAbstract)
E; ∆ ⊢l type ti = τ <: type ti

E; ∆ ⊢l τ1 ≡ τ2 (Sub-ManifestManifest)
E; ∆ ⊢l type ti = τ1 <: type ti = τ2
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E; ∆ ⊢l ti ≡ τ (Sub-AbstractManifest)
E; ∆ ⊢l type ti <: type ti = τ

E; ∆ ⊢l τ1 ≡ τ2 means that the type τ1 and the type τ2 are equivalent at the level l.
Type equivalence for ordinary type variables is defined by EQ-Type. On the other hand,
type equivalence for type components is defined by EQ-Dot and EQ-DotCode. The
substitution for type variables in EQ-Dot and EQ-DotCode is defined in Section 5.2.6.
Usual rules for congruence, reflexivity, symmetry, and transitivity are omitted.

E; ∆ ⊢l τ1 ≡ τ2

(Eq-Type)
E1, type ti = τ, E2; ∆ ⊢l ti ≡ τ

E; ∆ ⊢l p : sig S1 (type ti = τ) S2 end
(Eq-Dot)

E; ∆ ⊢l p.t ≡ τ [zj ← p.z | zj ∈ Dom(S1)]

E; ∆ ⊢0 p : (sig S1 (type ti = τ) S2 end) mcod
(Eq-DotCode)

E; ∆ ⊢0 $p.t ≡ τ [zj ← $p.z | zj ∈ Dom(S1)] code

5.2.6 Substitution

This section defines the substitution for type variables in E-Dot, E-DotCode, M-Dot,
M-DotCode, EQ-Dot and EQ-DotCode. We first define subst • (τ, p, S) for τ [zj ←
p.z | zj ∈Dom(S)]. For example, assuming that a signature S includes a type component ti,
the result of subst • (ti → ti, p, S) is p.t → p.t. In the same way, we define subst $ (τ, p, S)
for τ [zj ← $p.z | zj ∈ Dom(S)]. The difference from the first definition is that components
defined in S are accessed with a dollar instead of a dot. In other words, subst • (τ, p, S) is
used when p refers a module, while subst $ (τ, p, S) is used when p refers code of a module.
The definitions are shown below, where α is either • or $.

subst α (τ, p, S)

subst • (ti, p, S) =

{
p.t (ti ∈ Dom(S))
ti (otherwise)

subst $ (ti, p, S) =

{
$p.t (ti ∈ Dom(S))
ti (otherwise)

subst • (p′.t, p, S) =

{
p.p′.t (head(p′) ∈ Dom(S))
p′.t (otherwise)

subst • ($p′.t, p, S) =

{
$(p.p′).t (head(p′) ∈ Dom(S))
$p′.t (otherwise)

subst α (τ1 → τ2, p, S) = subst α (τ1, p, S) → subst α (τ2, p, S)
subst α (τ code, p, S) = subst α (τ, p, S) code
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We use the auxiliary function head(p), which means the head of the path p. The definition
is as follows:

head(Xi) = Xi

head(p.X) = head(p)
head($p.X) = head(p)

We give an additional explanation for subst • ($p′.t, p, S). This substitution is used when
a module A has the following signature:

module A: sig
module B: sig

type t
end mcod
val x: $B.t

end

If we have an expression A.x outside the module A, its type is derived as follows:
E; ∆ ⊢l A : sig S1 (val x : $B.t) S2 end

(E-Dot)
E; ∆ ⊢l A.x : ($B.t)[zj ← A.z | zj ∈ Dom(S1)]

where ($B.t)[zj ← A.z | zj ∈ Dom(S1)] is represented as subst • ($B.t, A, S1). Note that
Dom(S) for a signature S does not only include the names of type components, but also
the names of module components. Namely, Dom(S1) includes B. Therefore, the expression
A.x has type $(A.B).t rather than $B.t,

Then, we define subst • (M, p, S) for M [zj ← p.z | zj ∈ Dom(S)], and subst $ (M, p, S)
for M [zj ← $p.z | zj ∈ Dom(S)]. These are used in M-Dot and M-DotCode. To
propagate the substitution for type variables to components, we also define subst α (S′, p, S)
and subst α (C, p, S). subst $ (module Xi : M, p, S) is used for modules within code of a
module.

subst α (M, p, S)

subst α (sig S′ end, p, S) = sig subst α (S′, p, S) end
subst α (functor (Xi : M1)→M2, p, S) = functor (Xi : subst α (M1, p, S))→ subst α (M2, p, S)

subst α (M mcod, p, S) = subst α (M, p, S) mcod

subst α (S′, p, S)

subst α (ϵ, p, S) = ϵ

subst α (C S′, p, S) = subst α (C, p, S) subst α (S′, p, S)

subst α (C, p, S)

subst α (val xi : τ , p, S) = val xi : subst α (τ, p, S)
subst α (type ti, p, S) = type ti

subst α (type ti = τ , p, S) = type ti = subst α (τ, p, S)
subst • (module Xi : M, p, S) = module Xi : subst • (M, p.X, S)

subst $ (module Xi : M, p, S) = module Xi : subst $ (M, $p.X, S)
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5.3 Translation to plain MetaOCaml
We introduce a translation from λ<MA> to plain MetaOCaml. Following Watanabe et al.,
the translation turns code of a module into a module containing code. The major difference
from their translation is the performance improvement of translated code.

We use the notation [[ · ]]l∆ for the translation, which is parameterized by the level l (for
l = 0, 1) and the environment ∆ which may be referenced in translations for components.
For example, [[ e ]]0∆ is the result of the level-0 translation for the expression e on the ∆,
and similarly [[ e ]]1∆ is the result of the level-1 translation for the expression e on the ∆.
[[ < e > ]]0∆ is translated to < [[ e ]]1∆ >.

We first describe the translation [[ m ]]l∆ for a module expression m. The key to the rules
is to remove the multi-stage constructors for modules. The translation for code of a module
is given by Rule 5.7, which eliminates brackets surrounding a module and translates the
module at level 1. An escape for code of a module is translated by Rule 5.8. Rule 5.10
is for dereferencing a component from code of a module, which removes $ simply. The
translation for the expression which runs code of a module is complicated (Rule 5.9 and
5.11-5.14), which depend on the signature of the target module since we need to construct a
new module. The new module contains a nested module with a fresh name, and components.
The expression S �Xi, defined below, applies the MetaOCaml’s run-primitive to each value
component in the module Xi of the signature S. The run-primitive is propagated to nested
modules. In Rule 5.13, the type τ does not appear on the right side, where Xi.t is equal to
τ . Other module expressions are kept intact and the environment ∆ is not important for
now.

[[ m ]]l∆

[[ Xi ]]l∆ = Xi (5.1)
[[ p.X ]]l∆ = [[ p ]]l. X (5.2)

[[ struct s end ]]l∆ = struct [[ s ]]l∆ end (5.3)
[[ (m : M) ]]l∆ = ([[ m ]]l∆ : [[ M ]]l) (5.4)

[[ m (p) ]]0∆ = [[ m ]]0∆ ([[ p ]]0) (5.5)
[[ functor (Xi : M)→ m ]]0∆ = functor (Xi : [[ M ]]0)→ [[ m ]]0∆ (5.6)

[[ ⟨⟨m⟩⟩ ]]0∆ = [[ m ]]1∆ (5.7)
[[ ≈ m ]]1∆ = [[ m ]]0∆ (5.8)

[[ Runmod (m : sig S end mcod) ]]0∆ = struct (5.9)
module Xi = [[ m ]]0∆
S � Xi

end
where Xi is a fresh identifier

[[ $p.X ]]0∆ = [[ p ]]0. X (5.10)
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S � Xi

ϵ � Xi = ϵ (5.11)
((val xi : τ) S) � Xi = (let xi : τ = run Xi.x) S � Xi (5.12)

((type ti = τ) S) � Xi = (type ti = Xi.t) S � Xi (5.13)
((module X ′

i : M) S) � Xi = (module X ′
i = [[ Runmod (Xi.X

′ : M mcod) ]]0ϵ) S � Xi (5.14)

We show an example of the translation for Runmod. Consider the following program
written in λ<MA>.

module A = ⟨⟨ struct
type t = int
let x:t = 1
module B = struct

val y:t = 2
end

end ⟩⟩
module A’ = Runmod (A : sig

type t = int
val x:t
module B: sig

val y:t
end

end mcod)

A is code of a module, and A’ is a module obtained by applying Runmod to A. The result
of the translation is below.

module A = struct
type t = int
let x:t code = <1>
module B = struct

val y:t code = <2>
end

end
module A’ = struct

module X = A
type t = X.t
let x:t = run X.x
module B = struct

module Y = X.B
let y:t = run Y.y

end
end

The translation for structure components is defined below. In Rule 5.17, ∆′ is the en-
vironment updated in the typing rules S-Let1 and S-Mod1. That is, the result of a
translation [[ (let xi : τ = e) s ]]1∆ is [[ let xi : τ = e ]]1∆ [[ s ]]1∆, (val xi:τ)1 , and the result
of a translation [[ (module Xi = m) s ]]1∆ is [[ module Xi = m ]]1∆ [[ s ]]1∆, (module Xi:M)1 .
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[[ s ]]l∆

[[ ϵ ]]l∆ = ϵ (5.15)
[[ c s ]]0∆ = [[ c ]]0∆ [[ s ]]0∆ (5.16)
[[ c s ]]1∆ = [[ c ]]1∆ [[ s ]]1∆′ (5.17)

Structure components are translated by Rule 5.18-5.21. As we described in Chapter 4, we
use the genlet primitive to avoid code duplication. By Rule 5.19, a level-1 value component
(within code of a module) is translated into code of the value and genlet is inserted in front
of it. Others are kept intact.

[[ c ]]l∆

[[ let xi : τ = e ]]0∆ = let xi : [[ τ ]]0 = [[ e ]]0∆ (5.18)
[[ let xi : τ = e ]]1∆ = let xi : [[ τ ]]1 code = genlet < [[ e ]]1∆ > (5.19)

[[ type ti = τ ]]l∆ = type ti = [[ τ ]]l (5.20)
[[ module Xi = m ]]l∆ = module Xi = [[ m ]]l∆ (5.21)

Core expressions are translated by Rule 5.22-5.32. Because variables (component names)
in ∆ have level 1 before the translation, and they are bound to level-0 expressions, we
need to splice them. Hence, the rule for variables at level 1 (Rule 5.23) has two cases,
where Dom(∆) is the set of variables in the domain of ∆. In Rule 5.25, head(p) is used to
reference the component of a locally defined module within code of a module. The definition
of head(p) is given in Section 5.2.6. In Rule 5.29-5.31, the multi-stage constructors for core
expressions are not eliminated because they are MetaOCaml’s constructors. In contrast,
the constructor $ is eliminated through the translation (Rule 5.32).

[[ e ]]l∆

[[ xi ]]0∆ = xi (5.22)

[[ xi ]]1∆ =

{
∼ xi (xi ∈ Dom(∆))
xi (otherwise)

(5.23)

[[ p.x ]]0∆ = [[ p ]]0. x (5.24)

[[ p.x ]]1∆ =

{
∼ ([[ p ]]1. x) (head(p) ∈ Dom(∆))
[[ p ]]1. x (otherwise)

(5.25)

[[ fun xi → e ]]l∆ = fun xi → [[ e ]]l∆ (5.26)
[[ e1 e2 ]]l∆ = [[ e1 ]]l∆ [[ e2 ]]l∆ (5.27)

[[ let xi = e1 in e2 ]]l∆ = let xi = [[ e1 ]]l∆ in [[ e2 ]]l∆ (5.28)
[[ < e > ]]0∆ =< [[ e ]]1∆ > (5.29)

[[ ∼ e ]]1∆ =∼ [[ e ]]0∆ (5.30)
[[ run e ]]0∆ = run [[ e ]]0∆ (5.31)

[[ $p.x ]]0∆ = [[ p ]]0. x (5.32)
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Next, we define the translation rules for types. We use the notation [[ · ]]l to define the
translation for types. The environment ∆ is no longer needed. The translation rules for
module types are straightforward as follows:

[[ M ]]l

[[ sig S end ]]l = sig [[ S ]]l end (5.33)
[[ functor (Xi : M1)→M2 ]]0 = functor (Xi : [[ M1 ]]0)→ [[ M2 ]]0 (5.34)

[[ M mcod ]]0 = [[ M ]]1 (5.35)

The translation for a sequence of signature components is defined as:

[[ S ]]l

[[ ϵ ]]l = ϵ (5.36)
[[ C S ]]l = [[ C ]]l [[ S ]]l (5.37)

The translation rules for signature components are defined by Rule 5.38-5.42. A type of
a value component at level 1 is translated to a code type by Rule 5.39.

[[ C ]]l

[[ val xi : τ ]]0 = val xi : [[ τ ]]0 (5.38)
[[ val xi : τ ]]1 = val xi : [[ τ ]]1 code (5.39)

[[ type ti ]]l = type ti (5.40)
[[ type ti = τ ]]l = type ti = [[ τ ]]l (5.41)

[[ module Xi : M ]]l = module Xi : [[ M ]]l (5.42)

The translation for core types simply eliminates the symbol $. As the language λ<MA>

implicitly performs CSP for types, Rule 5.47 is defined at both levels 0 and 1.

[[ τ ]]l

[[ ti ]]l = ti (5.43)
[[ p.t ]]l = [[ p ]]l. t (5.44)

[[ τ1 → τ2 ]]l = [[ τ1 ]]l → [[ τ2 ]]l (5.45)
[[ τ code ]]0 = [[ τ ]]0 code (5.46)

[[ $p.t ]]l = [[ p ]]l. t (5.47)
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Paths are kept intact, except for eliminating $. The rules for paths are defined as follows:

[[ p ]]l

[[ Xi ]]l = Xi (5.48)
[[ p.X ]]l = [[ p ]]l. X (5.49)

[[ $p.X ]]l = [[ p ]]l. X (5.50)
[[ p1(p2) ]]l = [[ p1 ]]l([[ p2 ]]l) (5.51)

The translation rule for programs removes prog and end, and translates the sequence of
structure components s.

[[ P ]]0∆

[[ prog s end ]]0 = [[ s ]]0∆ (5.52)

Finally, we define the translation for environments. An environment is translated element-
wise. Since each element of an environment carries its level, we do not need to annotate the
translation with a level. After the translation, value components and module components
in code of a module are defined at level 0. Hence, those components in an environment
should be changed to level 0 and a type of code. Rule 5.56 and 5.59 perform it. Note that
bindings inside ordinary brackets remain at level 1. Other components are kept intact.

[[ E ]]∆

[[ ϵ ]]∆ = ϵ (5.53)
[[ C l; E ]]∆ = [[ C l ]]∆; [[ E ]]∆ (5.54)

[[ C l ]]∆

[[ (val xi : τ)0 ]]∆ = (val xi : [[ τ ]]0)0 (5.55)

[[ (val xi : τ)1 ]]∆ =

{
(val xi : [[ τ ]]1 code)0 (xi ∈ Dom(∆))
(val xi : [[ τ ]]1)1 (otherwise)

(5.56)

[[ (type ti = τ)l ]]∆ = (type ti = [[ τ ]]l)l (5.57)
[[ (module Xi : M)0 ]]∆ = (module Xi : [[ M ]]0)0 (5.58)
[[ (module Xi : M)1 ]]∆ = (module Xi : [[ M ]]1)0 (5.59)
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5.4 Translation Preserves Typing
We can prove that the following form of simple type preservation holds for the translation.
If E; ∆ ⊢0 e : τ is derivable in our type system, then [[ E ]]∆ ⊢0 [[ e ]]0∆ : [[ τ ]]0 is derivable.
We assume the following two: First, the target language is a subset of MetaOCaml, which
is the same as our language without multi-stage constructors for modules. However, the
type system in the target language is defined without the second environment ∆, which is
obtained by simply removing ∆ from our type system. Second, the target type system has
a typing rule for genlet. The typing rule for genlet is defined below.

E ⊢0 e : τ code
E ⊢0 genlet e : τ code

In this section, we first give some lemmas to prove preservation, then give the proof of
preservation.

Lemma 1 If [[ τ ]]l, [[ p ]]l, and [[ S ]]l are defined, then subst • ([[ τ ]]l, [[ p ]]l, [[ S ]]l) =
[[ subst • (τ, p, S) ]]l.
By the translation [[ τ ]]l, dollars ($) that appear in the τ are simply translated to dots (.).
Also, [[ p ]]l simply removes dollars. In addition, Dom(S) and Dom([[ S ]]l) contain the same
component names. Hence, we obtain subst • ([[ τ ]]l, [[ p ]]l, [[ S ]]l) = [[ subst • (τ, p, S) ]]l

We can obtain the following Lemma 2 by extending Lemma 1.
Lemma 2 If [[ τ ]]l, [[ p ]]l, and [[ S ]]l are defined, then subst • ([[ τ ]]l, [[ p ]]l, [[ S ]]l) =
[[ subst $ (τ, p, S) ]]0.
If [[ τ ]]l is defined on any level l, the results of [[ τ ]]0 and [[ τ ]]1 are the same. The difference
between subst • (τ, p, S) and subst $ (τ, p, S) is only whether dots are used or dollars are
used to access the path p. From the above and Lemma 1, we can prove this lemma.

Lemma 3 If [[ M ]]l, [[ p ]]l, and [[ S ]]l are defined, then subst • ([[ M ]]l, [[ p ]]l, [[ S ]]l) =
[[ subst • (M, p, S) ]]l.
We can prove this lemma in the same way as Lemma 1.

Lemma 4 If [[ M ]]l, [[ p ]]l, and [[ S ]]l are defined, then subst • ([[ M ]]l, [[ p ]]l, [[ S ]]l) =
[[ subst $ (M, p, S) ]]l.
We can prove this lemma in the same way to Lemma 2. Note that the level l in the
translation [[ subst $ (M, p, S) ]]l is not 0 in contrast to Lemma 2. The result of [[ M ]]1 may
include code of value components, but the result of [[ M ]]0 does not. Therefore, M should
be translated at the same level l.

Lemma 5 For a module type M , an identifier Xi, and a path p, [[ M [Xi ← p] ]]0 =
[[ M ]]0 [Xi ← [[ p ]]0].
The proof is straightforward.
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Lemma 6 For a signature S and an identifier Xi, (module Xi : sig [[ S ]]1 end)0 ⊢0 struct S�
Xi end : sig [[ S ]]0 end is derivable.
The proof goes by induction on the translation for S � Xi.

• Case: Rule 5.11.
The proof is straightforward.

• Case: Rule 5.12.
The type of Xi.x is τ code, and the type of run Xi.x is τ . By the induction hypothesis,
we obtain (module Xi : sig [[ S ]]1 end)0 ⊢0 struct (let xi : τ = run Xi.x) S �
Xi end : sig (val xi : τ) [[ S ]]0 end.

• Case: Rule 5.13.
The type of Xi.t is τ . By the induction hypothesis, we obtain (module Xi : sig
[[ S ]]1 end)0 ⊢0 struct (type ti = Xi.t) S�Xi end : sig (type ti = τ) [[ S ]]0 end.

• Case: Rule 5.14.
The result of the translation [[ Runmod (Xi.X

′
i : M mcod) ]]0ϵ is struct (module Yi =

Xi.X
′) S′ � Yi end, where M = sig S′ end and Yi is a fresh identifier. By the induc-

tion hypothesis, we obtain (module Xi : sig [[ S ]]1 end)0 ⊢0 struct (module X ′
i =

struct (module Yi = Xi.X
′) S′ � Yi end) S � Xi end : sig (module X ′

i :
sig [[ S′ ]]0 end) [[ S ]]0 end.

Lemma 7 If E; ∆ ⊢l M wf , then [[ E ]]∆ ⊢l [[ M ]]l wf
The proof goes by induction on the well-formedness derivation.

Lemma 8 If E; ∆ ⊢l M1 <: M2 , then [[ E ]]∆ ⊢l [[ M1 ]]l <: [[ M2 ]]l

The proof goes by induction on the subtyping derivation.

Theorem 1 If E; ∆ ⊢l e0 : τ0 , then [[ E ]]∆ ⊢l [[ e0 ]]l∆ : [[ τ0 ]]l

Proof 1 The proof goes by induction on the type derivation of e0. First, we suppose l = 0.

• Case: E-Code.
We have the conclusion E; ∆ ⊢0 < e > : τ code and the subderivation
E; ∆ ⊢1 e : τ . By the induction hypothesis, we have [[ E ]]∆ ⊢1 [[ e ]]1∆ : [[ τ ]]1.
By Rule 5.29, [[ < e > ]]0∆ =< [[ e ]]1∆ >. By Rule 5.46, [[ τ code ]]0 = [[ τ ]]0 code. By
the definition of [[ τ ]]l, we have [[ τ ]]0 = [[ τ ]]1. Hence, we obtain [[ E ]]∆ ⊢0 [[ <
e > ]]0∆ : [[ τ code ]]0.

• Case: E-Esc.
This rule does not exist for l = 0.

• Case: E-Run.
We have the conclusion E; ∆ ⊢0 run e : τ and the subderivation E; ∆ ⊢0 e : τ code.
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By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ e ]]0∆ : [[ τ code ]]0. By Rule 5.31,
[[ run e ]]0∆ = run [[ e ]]0∆. By Rule 5.46, [[ τ code ]]0 = [[ τ ]]0 code. Hence, we obtain
[[ E ]]∆ ⊢0 [[ run e ]]0∆ : [[ τ ]]0.

• Case: E-Fun, E-App, E-Let, and E-Substitution.
The proofs are straightforward.

• Case: E-Var.
We have the conclusion E; ∆ ⊢0 xi : τ and the subderivation (val xi : τ)0 ∈ E. By
Rule 5.22, [[ xi ]]0∆ = xi. By Rule 5.55, [[ (val xi : τ)0 ]]∆ = (val xi : [[ τ ]]0)0. Thus, we
have (val xi : [[ τ ]]0)0 ∈ [[ E ]]∆. Hence, we obtain [[ E ]]∆ ⊢0 [[ xi ]]0∆ : [[ τ ]]0.

• Case: E-Dot.
We have the conclusion E; ∆ ⊢0 p.x : τ [zj ← p.z | zj ∈ Dom(S1)] and the
subderivation E; ∆ ⊢0 p : sig S1 (val xi : τ) S2 end. By the induction hypothesis for
module expressions, we have [[ E ]]∆ ⊢0 [[ p ]]0 : [[ sig S1 (val xi : τ) S2 end ]]0. By Rule
5.33 and 5.38, [[ sig S1 (val xi : τ) S2 end ]]0 = sig [[ S1 ]]0 (val xi : [[ τ ]]0) [[ S2 ]]0 end.
By Lemma 1, subst • ([[ τ ]]0, [[ p ]]0, [[ S1 ]]0) = [[ subst • (τ, p, S1) ]]0. By Rule 5.24,
[[ p.x ]]0∆ = [[ p ]]0.x. Hence, we obtain [[ E ]]∆ ⊢0 [[ p.x ]]0∆ : [[ τ [zj ← p.z |
zj ∈ Dom(S1)] ]]0.

• Case: E-DotCode.
We have the conclusion E; ∆ ⊢0 $p.x : τ [zj ← $p.z | zj ∈ Dom(S1)] code and the
subderivation E; ∆ ⊢0 p : (sig S1 (val xi : τ) S2 end) mcod. By the induction
hypothesis for module expressions, we have [[ E ]]∆ ⊢0 [[ p ]]0 : [[ (sig S1 (val xi :
τ) S2 end) mcod ]]0. By Rule 5.32, [[ $p.x ]]0∆ = [[ p ]]0.x. By Rule 5.35 5.33, and 5.39,
[[ (sig S1 (val xi : τ) S2 end) mcod ]]0 = sig [[ S1 ]]1 (val xi : [[ τ ]]1 code) [[ S2 ]]1 end.
Thus, the following typing can be derived in the target language.

...
[[ E ]]∆ ⊢0 [[ p ]]0 : sig [[ S1 ]]1 (val xi : [[ τ ]]1 code) [[ S2 ]]1 end

[[ E ]]∆ ⊢0 [[ p ]]0.x : ([[ τ ]]1 code)[zj ← [[ p ]]0.z | zj ∈ Dom([[ S1 ]]1)]

The type of the conclusion in the above derivation is subst • ([[ τ ]]1, [[ p ]]0, [[ S1 ]]1) code.
By the definition, we have [[ p ]]0 = [[ p ]]1. We can apply Lemma 2 to them, then
we obtain subst • ([[ τ ]]1, [[ p ]]1, [[ S1 ]]1) = [[ subst $ (τ, p, S1) ]]0. Hence, we obtain
[[ E ]]∆ ⊢0 [[ $p.x ]]0∆ : [[ τ [zj ← $p.z | zj ∈ Dom(S1)] code ]]0.

Then, we suppose l = 1.

• Case: E-Var.
We have the conclusion E; ∆ ⊢1 xi : τ and the subderivation (val xi : τ)1 ∈ E. We
divide the proof into two cases.
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– Case: xi ∈ Dom(∆). By Rule 5.23, [[ xi ]]1∆ = ∼ xi. By Rule 5.56, (val xi :
[[ τ ]]1 code)0 ∈ [[ E ]]∆. Thus, we obtain [[ E ]]∆ ⊢0 xi : [[ τ ]]1 code, then we
obtain [[ E ]]∆ ⊢1 ∼ xi : [[ τ ]]1 by E-Esc.

– Case: xi /∈ Dom(∆). By Rule 5.23, [[ xi ]]1∆ = xi. By Rule 5.56, (val xi :
[[ τ ]]1)1 ∈ [[ E ]]∆. Thus, we obtain [[ E ]]∆ ⊢1 xi : [[ τ ]]1.

Hence, in either cases, we obtain [[ E ]]∆ ⊢1 [[ xi ]]1∆ : [[ τ ]]1.

• Case: E-Esc.
We have the conclusion E; ∆ ⊢1 ∼ e : τ and the subderivation E; ∆ ⊢0 e : τ code.
By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ e ]]0∆ : [[ τ code ]]0. By Rule 5.30,
[[ ∼ e ]]1∆ =∼ [[ e ]]0∆. By Rule 5.46, [[ τ code ]]0 = [[ τ ]]0 code. By the definition of
[[ τ ]]l, we have [[ τ ]]0 = [[ τ ]]1. Hence, we obtain [[ E ]]∆ ⊢1 [[ ∼ e ]]1∆ : [[ τ ]]1.

• Case: E-Dot.
We have the conclusion E; ∆ ⊢1 p.x : τ [zj ← p.z | zj ∈ Dom(S1)] and the
subderivation E; ∆ ⊢1 p : sig S1 (val xi : τ) S2 end. By the induction hypothesis
for module expressions, we have [[ E ]]∆ ⊢0 [[ p ]]1 : [[ sig S1 (val xi : τ) S2 end ]]1.
We divide the proof into two cases.

– Case: head(p) ∈ Dom(∆). By Rule 5.25, [[ p.x ]]1∆ = ∼ ([[ p ]]1.x). By
Rule 5.33 and 5.39, [[ sig S1 (val xi : τ) S2 end ]]1 = sig [[ S1 ]]1 (val xi :
[[ τ ]]1 code) [[ S2 ]]1 end. Therefore, we can construct the following derivation:

[[ E ]]∆ ⊢0 [[ p ]]1 : sig [[ S1 ]]1 (val xi : [[ τ ]]1 code) [[ S2 ]]1 end
[[ E ]]∆ ⊢0 [[ p ]]1.x : [[ τ ]]1[zj ← [[ p ]]1.z | zj ∈ Dom([[ S1 ]]1)] code
[[ E ]]∆ ⊢1 ∼ ([[ p ]]1.x) : [[ τ ]]1[zj ← [[ p ]]1.z | zj ∈ Dom([[ S1 ]]1)]

By Lemma 1, subst • ([[ τ ]]1, [[ p ]]1, [[ S1 ]]1) = [[ subst • (τ, p, S1) ]]1.
– Case: head(p) /∈ Dom(∆). By Rule 5.25, [[ p.x ]]1∆ = [[ p ]]1.x. By Rule 5.33 and

5.39, [[ sig S1 (val xi : τ) S2 end ]]1 = sig [[ S1 ]]1 (val xi : [[ τ ]]1) [[ S2 ]]1 end.
By Lemma 1, subst • ([[ τ ]]1, [[ p ]]1, [[ S1 ]]1) = [[ subst • (τ, p, S1) ]]1.

Hence, in either cases, we obtain [[ E ]]∆ ⊢1 [[ p.x ]]1∆ : [[ τ [zj ← p.z | zj ∈Dom(S1)] ]]1.

• Case: E-DotCode, E-Code, and E-Run.
This rule does not exist for l = 1.

• Case: E-Fun, E-App, E-Let, and E-Substitution.
The proofs are straightforward.

Now we can prove the type preservation for module expressions. If E; ∆ ⊢l m : M ,
then [[ E ]]∆ ⊢0 [[ m ]]l∆ : [[ M ]]l. Note that translated expressions are typed at level 0
instead of l. The target language (MetaOCaml) allows module expressions to be typed at
level 0 only.

The proof goes by induction on the type derivation of m. First, we suppose l = 0.
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• Case: M-Cod.
We have the conclusion E; ∆ ⊢0 ⟨⟨m⟩⟩ : M mcod and the subderivation E; ∆ ⊢1 m : M .
By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ m ]]1∆ : [[ M ]]1. By Rule
5.7, [[ ⟨⟨m⟩⟩ ]]0∆ = [[ m ]]1∆. By Rule 5.35, [[ M mcod ]]0 = [[ M ]]1. we obtain
[[ E ]]∆ ⊢0 [[ ⟨⟨m⟩⟩ ]]0∆ : [[ M mcod ]]0.

• Case: M-Esc.
This rule does not exist for l = 0.

• Case: M-Runmod.
We have the conclusion E; ∆ ⊢0 Runmod (m : M mcod) : M and the subderivation
E; ∆ ⊢0 m : M mcod. By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ m ]]0∆ : [[ M mcod ]]0.
We have a signature S for sig S end = M , [[ Runmod (m : M mcod) ]]0∆ is trans-
lated to a structure that satisfies S by Lemma 6. We have [[ sig S end ]]0 = [[ M ]]0.
Hence, we obtain [[ E ]]∆ ⊢0 [[ Runmod (m : M mcod) ]]0∆ : [[ M ]]0.

• Case: M-Var.
We have the conclusion E; ∆ ⊢0 Xi : M and the subderivation (module Xi :
M)0 ∈ E. By Rule 5.1, [[ Xi ]]0∆ = Xi. By Rule 5.55, [[ (module Xi : M)0 ]]0 =
(module Xi : [[ M ]]0)0. Thus, we have (module Xi : [[ M ]]0)0 ∈ [[ E ]]∆. Hence, we
obtain [[ E ]]∆ ⊢0 [[ Xi ]]0∆ : [[ M ]]0.

• Case: M-Dot.
We have the conclusion E; ∆ ⊢0 p.X : M [zj ← p.z | zj ∈ Dom(S1)] and the sub-
derivation E; ∆ ⊢0 p : sig S1 (module Xi : M) S2 end. By Rule 5.2, [[ p.X ]]0∆ =
[[ p ]]0.X. By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ p ]]0 : [[ sig S1 (module Xi :
M) S2 end ]]0. By Rule 5.33 and 5.42, [[ sig S1 (module Xi : M) S2 end ]]0 =
sig [[ S1 ]]0 (module Xi : [[ M ]]0) [[ S2 ]]0 end. By Lemma 3, [[ subst • (M, p, S1) ]]0 =
subst • ([[ M ]]0, [[ p ]]0, [[ S1 ]]0). Hence, we obtain [[ E ]]∆ ⊢0 [[ p.X ]]0∆ : [[ M [zj ←
p.z | zj ∈ Dom(S1)] ]]0.

• Case: M-DotCode.
We have the conclusion E; ∆ ⊢0 $p.X : M [zj ← $p.z | zj ∈ Dom(S1)] mcod
and the subderivation E; ∆ ⊢0 p : (sig S1 (module Xi : M) S2 end) mcod. By
the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ p ]]0 : [[ (sig S1 (module Xi :
M) S2 end) mcod ]]0. By Rule 5.10, [[ $p.X ]]0∆ = [[ p ]]0.X. By Rule 5.35,
[[ (sig S1 (module Xi : M) S2 end) mcod ]]0 = [[ sig S1 (module Xi : M) S2 end ]]1.
Moreover, this is translated to sig [[ S1 ]]1 (module Xi : [[ M ]]1) [[ S2 ]]1 end. By the
definition, we have [[ p ]]0 = [[ p ]]1. By Lemma 4, subst • ([[ M ]]1, [[ p ]]1, [[ S1 ]]1) =
[[ subst $ (M, p, S1) ]]1. Hence, we obtain [[ E ]]∆ ⊢0 [[ $p.X ]]0∆ : [[ M [zj ← $p.z |
zj ∈ Dom(S1)] mcod ]]0.

• Case: M-Functor.
We have the conclusion E; ∆ ⊢0 functor (Xi : M2)→ m : functor (Xi : M2)→M1,
X0

i /∈ Dom(E), and the derivation for E, (module Xi : M2)0; ∆ ⊢0 m : M1. By
the induction hypothesis, we have [[ E, (module Xi : M2)0 ]]∆ ⊢0 [[ m ]]0∆ : [[ M1 ]]0.
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By Rule 5.58, [[ E, (module Xi : M2)0 ]]∆ = [[ E ]]∆, (module Xi : [[ M2 ]]0)0. In
addition, by Rule 5.6 and Rule 5.34, we obtain [[ E ]]∆ ⊢0 [[ functor (Xi : M2) →
m ]]0∆ : [[ functor (Xi : M2)→M1 ]]0.

• Case: M-App.
We have the conclusion E; ∆ ⊢0 m (p) : M1 [Xi ← p], and the subderivations
E; ∆ ⊢0 p : M2 and E; ∆ ⊢0 m : functor (Xi : M2) → M1. By the induction
hypothesis, we have [[ E ]]∆ ⊢0 [[ m ]]0∆ : [[ functor (Xi : M2) → M1 ]]0 and
[[ E ]]∆ ⊢0 [[ p ]]0 : [[ M2 ]]0. By Rule 5.34, [[ functor (Xi : M2)→M1 ]]0 =
functor (Xi : [[ M2 ]]0) → [[ M1 ]]0. By Rule 5.5, [[ m (p) ]]0∆ = [[ m ]]0∆([[ p ]]0). By
Lemma 5, [[ M1 [Xi ← p] ]]0 = [[ M1 ]]0 [Xi ← [[ p ]]0]. Hence, we obtain [[ E ]]∆ ⊢0

[[ m (p) ]]0∆ : [[ M1 [Xi ← p] ]]0.

• Case: M-Subtyping.
We have the conclusion E; ∆ ⊢0 m : M2 and the subderivations E; ∆ ⊢0 m : M1
and E; ∆ ⊢0 M1 <: M2. By Lemma 8 and the induction hypothesis, we obtain
[[ E ]]∆ ⊢0 [[ m ]]0∆ : [[ M2 ]]0.

• Case: M-Strengthening.
We have the conclusion E; ∆ ⊢0 p : M/p0 and the subderivation E; ∆ ⊢0 p : M .
By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ p ]]0 : [[ M ]]0. By the definition
of the strengthening operation, [[ M/p0 ]]0 = [[ M ]]0/([[ p ]]0)0. Hence, we obtain
[[ E ]]∆ ⊢0 [[ p ]]0∆ : [[ M/p0 ]]0.

• Case: M-Str.
We have the conclusion E; ∆ ⊢0 struct s end : sig S end and the subderivation
E; ∆ ⊢0 s : S. By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ s ]]0∆ : [[ S ]]0. By
Rule 5.3 and Rule 5.33, we obtain [[ E ]]∆ ⊢0 [[ struct s end ]]0∆ : [[ sig S end ]]0.

• Case: M-Sig.
We have the conclusion E; ∆ ⊢0 (m : M) : M and the subderivations E; ∆ ⊢0 M wf
and E; ∆ ⊢0 m : M . By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ m ]]0∆ : [[ M ]]0.
By Lemma 7, [[ E ]]∆ ⊢0 [[ M ]]0 wf. Hence, we obtain [[ E ]]∆ ⊢0 [[ m ]]0∆ : [[ M ]]0.

Then, we suppose l = 1.

• Case: M-Esc.
We have the conclusion E; ∆ ⊢1 ≈ m : M and the subderivation E; ∆ ⊢0 m : M mcod.
By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ m ]]0∆ : [[ M mcod ]]0. By
Rule 5.8, [[ ≈ m ]]1∆ = [[ m ]]0∆. By Rule 5.35, [[ M mcod ]]0 = [[ M ]]1. we obtain
[[ E ]]∆ ⊢0 [[ ≈ m ]]1∆ : [[ M ]]1.

• Case: M-Var.
We have the conclusion E; ∆ ⊢1 Xi : M and the subderivation (module Xi : M)1 ∈
E. By Rule 5.1, [[ Xi ]]1∆ = Xi. By Rule 5.59, [[ (module Xi : M)1 ]]∆ = (module Xi :
[[ M ]]1)0. Hence, we obtain the subderivation (module Xi : [[ M ]]1)0 ∈ [[ E ]]∆, then
[[ E ]]∆ ⊢0 [[ Xi ]]1∆ : [[ M ]]1.
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• Case: M-Dot.
We have the conclusion E; ∆ ⊢1 p.X : M [zj ← p.z | zj ∈ Dom(S1)] and the sub-
derivation E; ∆ ⊢1 p : sig S1 (module Xi : M) S2 end. By Rule 5.2, [[ p.X ]]1∆ =
[[ p ]]1.X. By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ p ]]1 : [[ sig S1 (module Xi :
M) S2 end ]]1. By Rule 5.33 and 5.42, [[ sig S1 (module Xi : M) S2 end ]]1 =
sig [[ S1 ]]1 (module Xi : [[ M ]]1) [[ S2 ]]1 end. By Lemma 3, [[ subst • (M, p, S1) ]]1 =
subst • ([[ M ]]1, [[ p ]]1, [[ S1 ]]1). Hence, we obtain [[ E ]]∆ ⊢0 [[ p.X ]]1∆ : [[ M [zj ←
p.z | zj ∈ Dom(S1)] ]]1.

• Case: M-DotCode, M-Functor, M-App, M-Strengthening, M-Cod, and
M-Runmod.
This rule does not exist for l = 1.

• Case: M-Str, M-Sig, M-Subtyping.
These cases are the same as l = 0 and omitted.

Finally, we prove that if E; ∆ ⊢l s : S then [[ E ]]∆ ⊢0 [[ s ]]l∆ : [[ S ]]l. Note that the
typing judgment in the target language is annotated with level 0 only.

• Case: S-Empty.
The proof is straightforward.

• Case: S-Let0.
We have the conclusion E; ∆ ⊢0 (let xi : τ = e) s : (val xi : τ) S and the
subderivations E; ∆ ⊢0 e : τ , xi

0 /∈ Dom(E), and E, (val xi : τ)0; ∆ ⊢0 s : S.
By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ e ]]0∆ : [[ τ ]]0 and [[ E, (val xi :
τ)0 ]]∆ ⊢0 [[ s ]]0∆ : [[ S ]]0. We have xi

0 /∈ Dom([[ E ]]∆). By Rule 5.16 and
Rule 5.18, [[ (let xi : τ = e) s ]]0∆ = (let xi : [[ τ ]]0 = [[ e ]]0∆) [[ s ]]0∆. By Rule
5.37 and Rule 5.38, [[ (val xi : τ) S ]]0 = (val xi : [[ τ ]]0) [[ S ]]0. By Rule 5.54
and Rule 5.55, [[ E, (val xi : τ)0 ]]∆ = [[ E ]]∆, (val xi : [[ τ ]]0)0. Hence, we obtain
[[ E ]]∆ ⊢0 [[ (let xi : τ = e) s ]]0∆ : [[ (val xi : τ) S ]]0.

• Case: S-Let1.
We have the conclusion E; ∆ ⊢1 (let xi : τ = e) s : (val xi : τ) S, and the
subderivations E; ∆ ⊢1 e : τ , xi

1 /∈ Dom(E), and E, (val xi : τ)1; ∆, (val xi :
τ)1 ⊢1 s : S. Let ∆′ be ∆, (val xi : τ)1. By the induction hypothesis, we have
[[ E ]]∆ ⊢1 [[ e ]]1∆ : [[ τ ]]1 and [[ E, (val xi : τ)1 ]]∆′ ⊢0 [[ s ]]1∆′ : [[ S ]]1 . We
have xi

1 /∈ Dom([[ E ]]∆). By Rule 5.17 and Rule 5.19, [[ (let xi : τ = e) s ]]1∆ =
(let xi : [[ τ ]]1 code = genlet < [[ e ]]1∆ >) [[ s ]]1∆′ . By Rule 5.37 and Rule
5.39, [[ (val xi : τ) S ]]1 = (val xi : [[ τ ]]1 code) [[ S ]]1. By Rule 5.54 and Rule
5.56, [[ E, (val xi : τ)1 ]]∆′ = [[ E ]]∆′ , (val xi : [[ τ ]]1 code)0. Hence, we obtain
[[ E ]]∆ ⊢0 [[ (let xi : τ = e) s ]]1∆ : [[ (val xi : τ) S ]]1.

• Case: S-Type.
Suppose l = 0 (for l = 1, we can prove it in the same way). We have the conclusion
E; ∆ ⊢0 (type ti = τ) s : (type ti = τ) S and the subderivations ti

0 /∈ Dom(E)
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and E, (type ti = τ)0; ∆ ⊢0 s : S. By the induction hypothesis, we have
[[ E, (type ti = τ)0 ]]∆ ⊢0 [[ s ]]0∆ : [[ S ]]0. We have ti

0 /∈ Dom([[ E ]]∆). By Rule
5.54 and Rule 5.57, [[ E, (type ti = τ)0 ]]∆ = [[ E ]]∆, (type ti = [[ τ ]]0)0. By Rule
5.16 and Rule 5.20, [[ (type ti = τ) s ]]0∆ = (type ti = [[ τ ]]0) [[ s ]]0∆. By Rule 5.37
and Rule 5.41, [[ (type ti = τ) S ]]0 = (type ti = [[ τ ]]0) [[ S ]]0. Hence, we obtain
[[ E ]]∆ ⊢0 [[ (type ti = τ) s ]]0∆ : [[ (type ti = τ) S ]]0.

• Case: S-Mod0.
We have the conclusion E; ∆ ⊢0 (module Xi = m) s : (module Xi : M) S,
and the subderivations E; ∆ ⊢0 m : M , E; ∆ ⊢0 M wf, Xi

0 /∈ Dom(E),
and E, (module Xi : M)0; ∆ ⊢0 s : S. By the induction hypothesis, we have
[[ E ]]∆ ⊢0 [[ m ]]0∆ : [[ M ]]0 and [[ E, (module Xi : M)0 ]]∆ ⊢0 [[ s ]]0∆ : [[ S ]]0. By
Lemma 7, we have [[ E ]]∆ ⊢0 [[ M ]]0 wf. We have Xi

0 /∈ Dom([[ E ]]∆). By Rule 5.16
and Rule 5.21, [[ (module Xi = m) s ]]0∆ = (module Xi = [[ m ]]0∆) [[ s ]]0∆. By Rule
5.37 and Rule 5.42, [[ (module Xi : M) S ]]0 = (module Xi : [[ M ]]0) [[ S ]]0. By Rule
5.54 and Rule 5.58, [[ E, (module Xi : M)0 ]]∆ = [[ E ]]∆, (module Xi : [[ M ]]0)0.
Hence, we obtain [[ E ]]∆ ⊢0 [[ (module Xi = m) s ]]0∆ : [[ (module Xi : M) S ]]0.

• Case: S-Mod1.
We have the conclusion E; ∆ ⊢1 (module Xi = m) s : (module Xi : M) S,
and the subderivations E; ∆ ⊢1 m : M , E; ∆ ⊢1 M wf, Xi

1 /∈ Dom(E), and
E, (module Xi : M)1; ∆, (module Xi : M)1 ⊢1 s : S. Let ∆′ be ∆, (module Xi :
M)1. By the induction hypothesis, we have [[ E ]]∆ ⊢0 [[ m ]]1∆ : [[ M ]]1 and
[[ E, (module Xi : M)1 ]]∆′ ⊢0 [[ s ]]1∆′ : [[ S ]]1 . We have Xi

1 /∈ Dom([[ E ]]∆). By
Rule 5.17 and Rule 5.21, [[ (module Xi = m) s ]]1∆ = (module Xi = [[ m ]]1∆) [[ s ]]1∆′ .
By Rule 5.37 and Rule 5.42, [[ (module Xi : M) S ]]1 = (module Xi : [[ M ]]1) [[ S ]]1.
By Rule 5.54 and Rule 5.59, [[ E, (module Xi : M)1 ]]∆′ = [[ E ]]∆′ , (module Xi :
[[ M ]]1)0. Hence, we obtain [[ E ]]∆ ⊢0 [[ (module Xi = m) s ]]1∆ : [[ (module Xi :
M) S ]]1.

Q.E.D.
We have proved that the translation preserves typing. Therefore, we can implement

λ<MA> by translating to MetaOCaml. Our implementation and experiments will be de-
scribed in Chapter 7.

48



Chapter 6

Proposed Langugae: λ<MG>

This section defines the language λ<MG> for generative functors and first-class modules. We
first define the syntax and type system of λ<MG>, then define a translation to MetaOCaml.

The language λ<MG> is a two-stage programming language and an extension of core
MetaOCaml, which consists of simply typed lambda calculus with let expressions, first-
class modules, and multi-stage constructors. The design of the language is based on Leroy’s
module calculus [26], the classic type system λ◦ [25], and Watanabe et al.’s calculus [16].
The language in this thesis contains some changes from our previous work [27].

6.1 Syntax
Figure 6.1 shows the syntax for terms. We use metavariables ml for level-l module expres-
sions, sl for a sequence of level-l structure components, cl for level-l structure components,
and el for level-l core expressions. The level l is either 0 (present stage) or 1 (future stage)
because of two-stage language. We also use metavariables x (resp. t, X) for value names
(resp. type, module). $ and run module are constructors introduced by Watanabe et al.
If x is bound to code of a first-class module, $x.y refers to the code of the component y in
the module. The run module executes code of a module. <>, ∼, and run are the stan-
dard multi-stage constructors in MetaOCaml, while we take a different syntax for code of
a module ⟨⟨(module m1 : M)⟩⟩. We do not allow the escape constructor ∼ to be applied to
the code of a module. In addition, as the level-1 core expressions e1 do not include modules,
there is no other way to make the code of modules, and our syntax rejects expressions that
cannot be translated as described in Section 3.2.2. For the same reason, the level-1 module
expressions m1 do not include an unpacking expression (val e0). Programs P are defined
as a sequence of the level-0 core expressions.

Figure 5.2 defines the syntax for types. We use metavariables M for types of module ex-
pressions, S for a sequence of types of structure components, C for types of structure com-
ponents, and σ for types of core expressions. A type of a first-class module is (module M).
In this work we introduced the type (module M) mcod to distinguish the code type for
modules than that for core expressions (τ code) in order to disallow code of functors.
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Module expressions : m0 ::= X | struct s0 end | (val e0)
m1 ::= X | struct s1 end

Structures : sl ::= ϵ | cl sl

Structure components : cl ::= let x : σ = el | type t = σ |module X = ml

Core expressions : e0 ::= x | X.x

| fun x → e0 | e0 e0 | let x = e0 in e0

| (module m0 : M)
| < e1 > | run e0

| ⟨⟨(module m1 : M)⟩⟩ | (run module e0 : M)
| $x.x

e1 ::= x | X.x

| fun x → e1 | e1 e1 | let x = e1 in e1

| ∼ e0

Programs : P ::= ϵ | e0 P

Figure 6.1: Syntax for terms

Module types : M ::= sig S end
Signatures : S ::= ϵ | C S

Signature components : C ::= val x : σ | type t | type t = σ |module X : M

Core types : σ ::= t | X.t

| σ → σ | (module M)
| τ code
| (module M) mcod | $x.t

where τ is module-free

Figure 6.2: Syntax for types

E ::= ϵ | C l, E

∆ ::= ϵ | C l, ∆

Figure 6.3: Typing environments
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6.2 Type System

6.2.1 Typing Environments

Figure 6.3 shows typing environments of λ<MG>. The typing environments E and ∆ are
both a sequence of signature components that are annotated with a level l, where l is either
0 or 1. ∆ is used in translation rather than typing.

6.2.2 Typing Judgements

Typing judgments are also annotated by the level l. For example, E; ∆ ⊢l means a typing
judgment at the level l under the environment E and ∆. At the level l, only the elements
annotated with l in the environment E may be dereferenced. ∆ is used in translation.

6.2.3 Well-Typedness

We define that a program P is well-typed if ⊢ P wt is derivable. WT-Prog is a rule for
well-typedness of programs. The stage level starts from 0.

⊢ P wt

ϕ; ϕ ⊢0 e0
1 : σ · · · ϕ; ϕ ⊢0 e0

n : σ
(WT-Prog)

⊢ e0
1 · · · e0

n wt

6.2.4 Well-Formedness

The language λ<MG> defines well-formed (wf) types in which component names are unique.
Most of rules for well-formedness are the same as λ<MA> for applicative. The well-formedness
rules are defined as follows. T-Mod is a rule for the type of first-class modules and
T-ModCode is a rule for the type of code of first-class modules. T-Code requires the
type τ . T-CSP implicitly performs CSP for types. We write Dom(E) for variables bound
in the environment E.

E; ∆ ⊢l M wf

E; ∆ ⊢l S wf (WF-Sig)
E; ∆ ⊢l sig S end wf

E; ∆ ⊢l S wf

(WF-Empty)
E; ∆ ⊢l ϵ wf

E; ∆ ⊢l C wf E, (C)l; ∆ ⊢l S wf
(WF-SigComponents)

E; ∆ ⊢l C S wf
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E; ∆ ⊢l C wf

E; ∆ ⊢l σ wf xl /∈ Dom(E)
(WF-Val)

E; ∆ ⊢l val xl : σ wf

tl /∈ Dom(E)
(WF-TypeAbs)

E; ∆ ⊢l type t wf

tl /∈ Dom(E)
(WF-Type)

E; ∆ ⊢l type t = σ wf

E; ∆ ⊢l M wf X l /∈ Dom(E)
(WF-Mod)

E; ∆ ⊢l module X : M wf

E; ∆ ⊢l σ wf

(type t = σ)l ∈ E
(T-Var)

E; ∆ ⊢l t wf

(type t)l ∈ E
(T-VarAbs)

E; ∆ ⊢l t wf

(module X : sig S end)l ∈ E (type t = τ) ∈ S
(T-Dot)

E; ∆ ⊢l X.t wf

(module X : sig S end)l ∈ E (type t) ∈ S
(T-DotAbs)

E; ∆ ⊢l X.t wf

(val x : (module sig S end) mcod)0 ∈ E (type t = τ) ∈ S
(T-DotCode)

E; ∆ ⊢0 $x.t wf

(val x : (module sig S end) mcod)0 ∈ E (type t) ∈ S
(T-DotCodeAbs)

E; ∆ ⊢0 $x.t wf

E; ∆ ⊢l σ1 wf E; ∆ ⊢l σ2 wf (T-Arr)
E; ∆ ⊢l σ1 → σ2 wf

E; ∆ ⊢0 τ wf (T-Code)
E; ∆ ⊢0 τ code wf

E; ∆ ⊢0 σ wf (T-Csp)
E; ∆ ⊢1 σ wf

E; ∆ ⊢l M wf (T-Mod)
E; ∆ ⊢l (module M) wf

E; ∆ ⊢0 (module M) wf
(T-ModCode)

E; ∆ ⊢0 (module M) mcod wf
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6.2.5 Typing Rules

This section defines typing rules of the language λ<MG>. M-Val is a typing rule for
unpacking first-class modules, which is restricted at level 0 due to avoiding the problem
shown in Section 3.2.2.

E; ∆ ⊢l m : M

(module X : M)l ∈ E
(M-Var)

E; ∆ ⊢l X : M

E; ∆ ⊢l sl : S (M-Str)
E; ∆ ⊢l struct sl end : sig S end

E; ∆ ⊢0 e0 : (module M)
(M-Val)

E; ∆ ⊢0 (val e0) : M

The typing rules for structure components are defined below. In S-Let1 and S-Mod1,
the environment ∆ is updated to prevent dangling references.

E; ∆ ⊢l s : S

(S-Empty)
E; ∆ ⊢l ϵ : ϵ

E; ∆ ⊢0 e0 : σ x0 /∈ Dom(E) E, (val x : σ)0; ∆ ⊢0 s0 : S
(S-Let0)

E; ∆ ⊢0 (let x : σ = e0) s0 : (val x : σ) S

E; ∆ ⊢1 e1 : σ x1 /∈ Dom(E) E, (val x : σ)1; ∆, (val x : σ)1 ⊢1 s1 : S
(S-Let1)

E; ∆ ⊢1 (let x : σ = e1) s1 : (val x : σ) S

tl /∈ Dom(E) E, (type t = σ)l; ∆ ⊢l sl : S
(S-Type)

E; ∆ ⊢l (type t = σ) sl : (type t = σ) S

E; ∆ ⊢0 m0 : M E; ∆ ⊢0 M wf X0 /∈ Dom(E)
E, (module X : M)0; ∆ ⊢0 s0 : S

(S-Mod0)
E; ∆ ⊢0 (module X = m0) s0 : (module X : M) S

E; ∆ ⊢1 m1 : M E; ∆ ⊢1 M wf X1 /∈ Dom(E)
E, (module X : M)1; ∆, (module X : M)1 ⊢1 s1 : S

(S-Mod1)
E; ∆ ⊢1 (module X = m1) s1 : (module X : M) S
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The typing rules are carefully designed to distinguish between code of modules and or-
dinary code such as < e1 >. To prevent a module enclosed with ordinary brackets, the
typing rules E-Code, E-Esc, and E-Run require that expressions have the type τ , which
is a module-free type. For example, (module M) is not the type τ . Only the expres-
sion ⟨⟨(module m1 : M)⟩⟩ is allowed to construct code of modules, which has the type
(module M) mcod. For generative semantics, each abstract types has a fresh type. The
substitutions in E-Dot and E-DotCode avoid free occurrences of type variables. For
example, let x be ⟨⟨(module struct type t let y : t = 1 end : S)⟩⟩, the type of $x.y
becomes $x.t instead of t.

E; ∆ ⊢l e : σ

(val x : σ)l ∈ E
(E-Var)

E; ∆ ⊢l x : σ

(module X : sig S1 (val x : σ) S2 end)l ∈ E
(E-Dot)

E; ∆ ⊢l X.x : σ[z ← X.z | z ∈ Dom(S1)]

(val x : (module (sig S1 (val y : σ) S2 end)) mcod)0 ∈ E
(E-DotCode)

E; ∆ ⊢0 $x.y : σ[z ← $x.z | z ∈ Dom(S1)] code

E; ∆ ⊢l σ1 wf E, (val x : σ1)l; ∆ ⊢l el : σ2 (E-Fun)
E; ∆ ⊢l fun x → el : σ1 → σ2

E; ∆ ⊢l el
1 : σ1 → σ2 E; ∆ ⊢l el

2 : σ1 (E-App)
E; ∆ ⊢l el

1 el
2 : σ2

E; ∆ ⊢l el
1 : σ1 E, (val x : σ1)l; ∆ ⊢l el

2 : σ2 (E-Let)
E; ∆ ⊢l let x = el

1 in el
2 : σ2

E; ∆ ⊢0 M wf E; ∆ ⊢0 m0 : M (E-Mod)
E; ∆ ⊢0 (module m0 : M) : (module M)

E; ∆ ⊢1 e1 : τ (E-Code)
E; ∆ ⊢0 < e1 > : τ code

E; ∆ ⊢0 e0 : τ code (E-Esc)
E; ∆ ⊢1 ∼ e0 : τ

E; ∆ ⊢0 e0 : τ code (E-Run)
E; ∆ ⊢0 run e0 : τ

E; ∆ ⊢1 M wf E; ∆ ⊢1 m1 : M (E-ModCode)
E; ∆ ⊢0 ⟨⟨(module m1 : M)⟩⟩ : (module M) mcod

E; ∆ ⊢0 e0 : (module M) mcod
(E-Runmod)

E; ∆ ⊢0 (run module e0 : M) : (module M)
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6.3 Translation to plain MetaOCaml
In this section, we define a translation from λ<MG> to MetaOCaml and explain the key part
of the translation. As with the language λ<MA> for applicative, we write the translation as
[[ · ]]l∆, where l is the level and ∆ is the environment. For convenience, we slightly extend
the unpacking constructor in MetaOCaml so that (val e0).x is a valid syntax, but it can
be easily resolved by introducing the declaration module X = (val e0), and relacing it to
X.x for a fresh name X.

We define the translation rules for module expressions by Rule 6.1-6.3. The translation for
a sequence of structure components is defined by Rule 6.4-6.6, where ∆′ is the environment
updated by the typing rules S-Let1 and S-Mod1. The translation for structure components
is defined by Rule 6.7-6.10. To avoid duplicate code, Rule 6.8 inserts genlet in front of the
code.

[[ m ]]l∆

[[ X ]]l∆ = X (6.1)
[[ struct sl end ]]l∆ = struct [[ sl ]]l∆ end (6.2)

[[ (val e0) ]]0∆ = (val [[ e0 ]]0∆) (6.3)

[[ s ]]l∆

[[ ϵ ]]l∆ = ϵ (6.4)
[[ c0 s0 ]]0∆ = [[ c0 ]]0∆ [[ s0 ]]0∆ (6.5)
[[ c1 s1 ]]1∆ = [[ c1 ]]1∆ [[ s1 ]]1∆′ (6.6)

[[ c ]]l∆

[[ let x : σ = e0 ]]0∆ = let x : [[ σ ]]0 = [[ e0 ]]0∆ (6.7)
[[ let x : σ = e1 ]]1∆ = let x : [[ σ ]]1 code = genlet < [[ e1 ]]1∆ > (6.8)

[[ type t = σ ]]l∆ = type t = [[ σ ]]l (6.9)
[[ module X = ml ]]l∆ = module X = [[ ml ]]l∆ (6.10)

The translation for core expressions is defined by Rule 6.11-6.28. The environment ∆
is used in Rule 6.12 and Rule 6.14 to adjust a level of variables. By Rule 6.23, brackets
outside a module are removed, and the module is translated at level 1. The translation
for run module is defined by Rule 6.24-6.28, which depend on the signature of the target
module. The expression S � X applies the run-primitive to each value component in the
module X of the signature S.
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[[ e ]]l∆

[[ x ]]0∆ = x (6.11)

[[ x ]]1∆ =

{
∼ x (x ∈ Dom(∆))
x (otherwise)

(6.12)

[[ X.x ]]0∆ = X.x (6.13)

[[ X.x ]]1∆ =

{
∼ (X.x) (X ∈ Dom(∆))
X.x (otherwise)

(6.14)

[[ fun x → el ]]l∆ = fun x → [[ el ]]l∆ (6.15)
[[ el

1 el
2 ]]l∆ = [[ el

1 ]]l∆ [[ el
2 ]]l∆ (6.16)

[[ let x = el
1 in el

2 ]]l∆ = let x = [[ el
1 ]]l∆ in [[ el

2 ]]l∆ (6.17)
[[ < e1 > ]]0∆ =< [[ e1 ]]1∆ > (6.18)

[[ ∼ e0 ]]1∆ =∼ [[ e0 ]]0∆ (6.19)
[[ run e0 ]]0∆ = run [[ e0 ]]0∆ (6.20)
[[ $x1.x2 ]]0∆ = (val x1) . x2 (6.21)

[[ (module m0 : M) ]]0∆ = (module [[ m0 ]]0∆ : [[ M ]]0) (6.22)
[[ ⟨⟨(module m1 : M)⟩⟩ ]]0∆ = (module [[ m1 ]]1∆ : [[ M ]]1) (6.23)

[[ (run module e0 : sig S end) ]]0∆ = (module struct (6.24)
module X = (val [[ e0 ]]0∆)
S � X

end : sig [[ S ]]0 end)

S � X

ϵ � X = ϵ (6.25)
((val x : σ) S) � X = (let x : σ = run X.x) S � X (6.26)

((type t = σ) S) � X = (type t = X.t) S � X (6.27)
((module X ′ : M) S) � X = (module X ′ = (6.28)

(val [[ (run module (module X.X ′ : M) : M) ]]0ϵ))
S � X

The translation for programs removes prog and end, and the sequence of core expressions
is translated at level 0.

[[ P ]]0∆

[[ prog e0
1 · · · e0

n end ]]0 = [[ e0
1 ]]0∆ · · · [[ e0

n ]]0∆ (6.29)
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Then, we define the translation for module types by Rule 6.30, the translation for a
sequence of signature components by Rule 6.31-6.32, the translation for signature compo-
nents by Rule 6.33-6.37, and the translation for core types by Rule 6.38-6.44. We write
[[ · ]]l for these translations without the environment ∆. Our extensions are eliminated by
the translation.

[[ M ]]l

[[ sig S end ]]l = sig [[ S ]]l end (6.30)

[[ S ]]l

[[ ϵ ]]l = ϵ (6.31)
[[ C S ]]l = [[ C ]]l [[ S ]]l (6.32)

[[ C ]]l

[[ val x : σ ]]0 = val x : [[ σ ]]0 (6.33)
[[ val x : σ ]]1 = val x : [[ σ ]]1 code (6.34)

[[ type t ]]l = type t (6.35)
[[ type t = σ ]]l = type t = [[ σ ]]l (6.36)

[[ module X : M ]]l = module X : [[ M ]]l (6.37)

[[ σ ]]l

[[ t ]]l = t (6.38)
[[ X.t ]]l = X.t (6.39)
[[ $x.t ]]l = (val x) . t (6.40)

[[ σ1 → σ2 ]]l = [[ σ1 ]]l → [[ σ2 ]]l (6.41)
[[ τ code ]]0 = [[ τ ]]0 code (6.42)

[[ (module M) ]]l = (module [[ M ]]l) (6.43)
[[ (module M) mcod ]]0 = (module [[ M ]]1) (6.44)
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The translation for the typing environment E is defined by Rule 6.45-6.51, where we use
the notation [[ · ]]∆. Since each element of an environment carries its level, we do not need
to annotate the translation with a level. The translation changes the level of bindings to
level-1 value components and level-1 module components to level 0. Note that bindings
inside ordinary brackets remain at level 1.

[[ E ]]∆

[[ ϵ ]]∆ = ϵ (6.45)
[[ C l; E ]]∆ = [[ C l ]]∆; [[ E ]]∆ (6.46)

[[ C j ]]∆

[[ (val x : σ)0 ]]∆ = (val x : [[ σ ]]0)0 (6.47)

[[ (val x : σ)1 ]]∆ =

{
(val x : [[ σ ]]1 code)0 (x ∈ Dom(∆))
(val x : [[ σ ]]1)1 (otherwise)

(6.48)

[[ (type t = σ)l ]]∆ = (type t = [[ σ ]]l)l (6.49)
[[ (module X : M)0 ]]∆ = (module X : [[ M ]]0)0 (6.50)
[[ (module X : M)1 ]]∆ = (module X : [[ M ]]1)0 (6.51)

It can be expected that the following form of theorem holds for the translation defined in
this section; if E; ∆ ⊢l el : σ, then [[ E ]]∆ ⊢l [[ el ]]l∆ : [[ σ ]]l. The proof of this theorem
is left for future work.

58



Chapter 7

Performance Evaluation

We have implemented our languages through the translations, and conducted a few exper-
iments against microbenchmarks. The result is quite positive for our claims in that the
code-explosion problem in the Watanabe et al.’s study is solved, or at least, drastically
reduced as long as we have experimented.

The microbenchmarks created by Watanabe et al. perform a domain-specific optimization
for arithmetic expressions such as 0 + n → n using the tagless-final embedding [14]. Figure
7.1 shows the core part of the benchmark written in λ<MA>, where the language includes
extensions such as the base type int, conditional expressions, and primitives for arithmetic
operations. The tagless-final style uses module types to embed syntax and typing rules of
the object language. The module type S specifies the type int t representing a numeric
type in the object language, int representing a numeric literal, and the functions add, sub,
mul, and div correspond to four arithmetic operations. The functor SuppressAddMulZero
is a program translator in such an object language. It is given code of a module with
signature S and returns code of a module after performing the optimization. By applying
it repeatedly, a fully optimized module can be obtained. In this chapter, the depth refers
to the number of repeated functor applications. For the complete implementation, see our
repositories [28, 29].

The code-explosion problem shows up if we use Watanabe et al.’s translation for the above
program. The functor SuppressAddMulZero, given a module M, splices the components of
M into (the code of) a new module. For example, in the int component, the M.int code is
spliced twice. Thus, as the depth of functor calls increases, the size of the generated code
increases exponentially.

We use the following programs for experiments.

• A MetaOCaml program translated from the benchmark program written in λ<MA>.

• A MetaOCaml program translated from the benchmark program written in λ<MG>.

• A MetaOCaml program translated from the benchmark program written in λ<M>.

• A naive OCaml program that expresses the benchmark without code generation.
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module type S = sig
type int_t
val int: int -> int_t
val add: int_t -> int_t -> int_t
val sub: int_t -> int_t -> int_t
val mul: int_t -> int_t -> int_t
val div: int_t -> int_t -> int_t

end

module SuppressAddMulZero = functor (M : S mcod) ->
⟨⟨ ( struct

type int_t = $M.int_t * bool
let int = fun n1 ->

if n1 = 0 then (˜( $M.int) 0, true)
else (˜( $M.int) n1 , false )

let add = fun n1 -> fun n2 ->
match (n1 ,n2) with

(n1 ,b1) ,(n2 ,b2) ->
if (b1 && b2) then (˜( $M.int) 0, true)

else ˜( $M.add) n1 n2
let sub = fun n1 -> fun n2 ->

if n1 = n2 then (˜( $M.int) 0, true)
else ˜( $M.sub) n1 n2

let mul = fun n1 -> fun n2 ->
match (n1 ,n2) with

(n1 ,b1) ,(n2 ,b2) ->
if (b1 || b2) then (˜( $M.int) 0, true)

else ˜( $M.mul) n1 n2
let div = fun n1 -> fun n2 ->

match (n1 ,n2) with
(n1 ,_) ,(n2 ,_) ->

(˜( $M.div) n1 n2 , false )
end : S) ⟩⟩

Figure 7.1: Core Part of the Benchmark Written in λ<MA>

For these programs, we measure the time for code generation and compilation, the execution
time of generated code, the size of generated code, and the memory usage during program
execution. The measurement result is the average of 10 trials. We conduct these experiments
on Ubuntu 18.04 LTS, Xeon E3-1225 v6@3.3GHz, Memory 32GB, BER MetaOCaml N107
(OCaml 4.07.1), byte code compiler. The memory usage is measured using the GNU time
command for compiled executables, defined by the maximum resident-set size of the process
during its lifetime. The size of code of a generated module is defined as the sum of string
lengths for each code of component in the module.

Figure 7.2 shows the time for code generation and compilation, where the horizontal axis
is the number of functor applications (depth) and the vertical axis is the time for code
generation on a logarithmic scale. The time of Watanabe et al.’s program increases expo-
nentially, and the experiment was only performed up to depth 15. On the other hand, ours
have a gentle slope. In this benchmark, our two programs actually generate the same code
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for value components because the value component contains only values and not modules.
Figure 7.3 shows the size of generated code where the vertical axis is on a logarithmic

scale. As with the time for code generation, the size of Watanabe et al.’s program increases
exponentially, while ours do linearly.

Figure 7.4 shows the execution time (excluding the time for code generation). The result
shows that the generated modules run faster than the naive one. Our programs are about
30% faster than Watanabe et al.’s (Figure 7.5). Our non-duplicating code reduces the
number of steps in program execution and encourages optimization by the compiler.

Figure 7.6 shows the memory usage where the horizontal (vertical, resp.) axis is the
number of functor applications (memory usage on a logarithmic scale, resp.). The program
translated by Watanabe et al.’s consumes the memory exponentially. On the other hand,
the memory usage of ours has a gentle slope. The naive program without code generation
uses a recursive module to repeatedly apply a functor for normalization. The recursive
module contains several nested modules, and these are captured each time the functor is
applied. Therefore, the memory usage of the naive program is larger than ours which create
at most 100 modules.

In our benchmark, functors are applied to modules quite a few times, but it is not an
unrealistic experiment. Since the implementation of MirageOS contains a number of func-
tor applications, a unikernel that runs web service has functor applications of depth up to
10 [11]. At depth 10, the execution time is 0.14 seconds for the naive program (without
code generation), while it is only 0.016 seconds for our programs. Even if the time for code
generation is added, our program is more efficient. MirageOS actually contains more indi-
rections than this, because it contains a large number of components and nested modules.
Hence, we expect that the benefit of efficient code generation for modules will be greater.
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Chapter 8

Discussion

8.1 Code of Functors
Our languages allow code of modules, but disallow code of functors. This restriction
(slightly) complicated the syntaxes of our languages. However, this design choice was moti-
vated by the following consideration. We first point out that removing this restriction may
be possible, but needs an extra cost. Let us consider an expression <fun m -> (module
...)> of type ((module A) -> (module B)) code, which is code of a functor in the lan-
guage λ<MG>. Since plain MetaOCaml prohibits modules within brackets, the brackets
should be translated away, and one possible solution is to use the unstaging translation
by Kiselyov [30]. There is, however, a problem with this solution, in that the unstaging
translation translates a bracket-expression to a thunk, and it would severely degrade the
performance of generated code and also complicate the whole translation.

We think that applications for code of functors are not sufficiently appealing, in the way
that the cost mentioned above is justified in the context of program generation. As is
discussed in this thesis, functor applications are a major source of indirections and penalize
performance, and the purpose of making use of the code-generation technique is to optimize
(inline) functor applications. Since MetaOCaml is generative in the sense that we cannot
manipulate code inside brackets, hence the code of functors may not be further optimized.

8.2 Remaining Duplicated Code
Although our translations eliminate most code duplication, they still allow duplicated code
to be generated at the top level. Namely, each component has no duplicated code, but
duplicated code may exist at the top-level components. We think that this is not a serious
problem, as such duplication appears only at the top level.

8.3 Possible Scope Extrusion of Local Module References
Parreaux and Shaikhha [31] cite our paper [27] and are concerned that genlet may extrude
local module references. Figure 8.1 is an illustrative example that we inferred based on their
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module type S = sig
val v: int code

end

module X: S = struct
module Y = struct

let f = fun x -> x
end
let v = genlet < Y.f 1 >

end

let u = < ˜(X.v) > ;;
(* val u : int code =

<let lv_1 = (* CSP Y.f *) 1 in lv_1 > *)
Runcode .run u ;;
(* - : int = 1 *)

Figure 8.1: Extruding Local Module References

claims. In this example, the nested module Y is concealed by sealing with the signature S,
while a reference to Y is embedded into code of the value component v and genlet is applied
to its code. Since the component v is exposed by the signature S, it can be accessed from
outside the module X, as in the code bound to the variable u. The problem here is that the
code of u contains the reference to the module Y that is out of scope. This seems to be the
scope extrusion problem. However, it is due to the combination of modules and CSP rather
than genlet. The generated code can be executed, but it is difficult for us to argue that
MetaOCaml is sound. To avoid this problem, our languages do not allow CSP for arbitrary
values. In addition, since all value components in code of a module are translated to ones
of type code, we do not encounter the pattern in Figure 8.1.

Let us hint at two possible solutions for it. One is to limit the upper bound for the scope of
genlet; if code contains local module references, then genlet should not perform let-insertion
beyond the scope of its module. Although our translation relies on genlet crossing module
boundaries, this limitation does not affect ours. Because our translation inlines code of
value components into another code, no module reference is left in the result code. The
other is to limit CSP to basic values or external module references only. Namely, it does
not allow CSP for local module references. Addressing this problem is future work.

8.4 Preserving Semantics of Termination
The genlet primitive changes the semantics of program termination. An illustrative example
is:

# <if true then 0 else ˜( genlet <1+2>)>
- : int code = <let lv_1 = 1 + 2 in if true then 0 else

lv_1 >

When the first line is evaluated, the second line is generated in which the expression 1+2 is
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inserted into the top of the if statement. If we replace 1+2 by a non-terminating expression,
the semantics of the code is changed by inserting genlet in the original code. Thus, inserting
genlet is problematic in general.

Our translations use genlet, but we argue that this problem does not occur. The first
reason is that genlet is not a primitive of our source languages. The second reason is that
OCaml evaluates the right-hand side of each component when evaluating a module. That is,
if a module has components that do not terminate, the computation of the entire module
does not terminate, either. Therefore, in our translations, the semantics of termination
is preserved even if genlet let-inserts components that do not terminate, as in the above
example.
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Chapter 9

Related Work

In this chapter, we mention several closely related work to our work. For comparison, we
pick up three previous works, Macros, Flambda and MLton, which can eliminate module
overhead at compile time. We also mention Functoria, which helps developers build appli-
cations that use many modules, as well as other research on class generation and research
on using genlet.

Macros [32] are an extension of OCaml which allows type-safe compile-time metaprogram-
ming. It provides constructors such as quoting <<e>> and splicing $e and can manipulate
code fragments similar to MetaOCaml. Macros fully support the OCaml language includ-
ing the module system, and the abstraction overhead of modules can be eliminated in a
similar way as ours. However, our approach can generate code specialized for the runtime
environment, such as the number of CPU cores and memory size.

Flambda [33] is an optimizer of the OCaml compiler which inlines a program whenever
possible. Since functor application is the target of inlining for Flambda, an indirection
discussed in this thesis might be eliminated by Flambda, too. Also, MLton [34] is an
optimizing compiler for the Standard ML, which aggressively inlines functors. While both of
these two studies are fully automated, our approach has its own merit in that a programmer
is given full control as to how and what code is generated.

Functoria [11] is a domain-specific language mainly used in MirageOS, which can manip-
ulate modules and functors to build modular applications. Its main purpose is to scrap the
boilerplate associated with programs which use modules. Functoria generates an OCaml
program from a configuration that describes how to combine modules. Since MetaOCaml
does not allow code of modules to be generated as values, Functoria currently uses an ad
hoc approach to generate code of modules as strings. We hope that our work improves the
implementation of Functoria in the future.

Squid [4] is a multi-stage programming framework for Scala, and guarantees that gen-
erated code is well-typed and well-scoped. The latest work in Squid is generating classes,
which is presented by Parreaux and Shaikhha [31]. They proposed a library for class gen-
eration built on top of the Squid and gave practical use cases. Unfortunately, it is difficult
to simply apply their use cases to our approach. First, classes can have states, but modules
without side effects cannot. Second, their library provides a way to dynamically generate
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fields of classes, but our language cannot. Achieving them in a type-safe way and giving
large-scale practical use cases are left for future work.

In this study, we have extensively used the genlet primitive in MetaOCaml, which is not
yet used in many applications, but has huge potential in realizing code sharing in vari-
ous forms. As another application of using genlet, Yallop and Kiselyov [35] use genlet for
generating mutually-recursive definitions. Their study influenced MetaOCaml, and the lat-
est MetaOCaml 4.11 now provides primitives to facilitate let-rec insertion. The primitives
can mark the scope of the let rec definition that will be generated. In our language, recur-
sive value components are simply bound with let expression and inserted using genlet 1, but
controlling destinations of genlet may be useful to tackle challenges left open, such as avoid-
ing duplicate code at the top level and generating recursive modules (mutually-recursive
functors).

1This thesis does not define a translation rule for the let-rec value component, but our implementations
support it.
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Chapter 10

Conclusion

In this thesis, we have studied multi-stage programming languages for generating and ma-
nipulating code of modules. We have analyzed the code-explosion problem in the previous
study and proposed an approach that uses the MetaOCaml’s genlet primitive to share code
among modules. We have designed two languages that allow generating modules in two
different styles, which are translated based on the approach. We have defined the languages
and the translations, and proved that one of the translations preserves typing. We have im-
plemented program translators based on our translations and conducted a few experiments
against a microbenchmark. The result shown that our translations give an space- and time-
efficient code for applications which need repeated applications of functors to modules.

Our contributions in this paper are summarized as follows. First, we confirmed that
dynamic let insertion by genlet can go across the boundaries of modules and functors,
and can be used to avoid the code duplication problem in a relatively large codebase.
Second, we have solved the code-explosion problem in the previous study by Watanabe
et al., and opened a way to generate code using high-level programming which makes
heavy use of module abstraction. Third, we have extended Watanabe et al.’s language
to allow code generation including nested modules and abstract types, and gave complete
definitions including run module. Also, we have given the proof of type preservation of
the translation. Fourth, we have introduced a language with second-class modules and
applicative functors, which is essential for staging existing OCaml programs.

In future work, we plan to extend our source languages to more realistic ones, such as side
effects, polymorphism, sharing constraints, and mutually-recursive modules. We also plan
to develop practical applications in large using our languages. We think that MirageOS
is one of such applications where approximately 10-times nested functor applications are
used in practice. Investigating theoretical foundation of genlet is also an interesting future
work.
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