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Abstract
We present a refinement type system for total correctness
verification (i.e., partial correctness and termination verifica-
tion) of ML-like higher-order functional programs with alge-
braic data types. To fully automate verification, we propose a
novel refinement type inference method based on Horn con-
straint solving that can infer inductive invariants and ranking
functions used respectively for partial correctness and ter-
mination verification. To our knowledge, our method is the
first to automatically infer invariants and ranking functions
over not only numerical values but also over higher-order
functions and algebraic data structures. To this end, we pro-
pose novel techniques to lift existing invariant and ranking
function synthesis methods for numerical values to those for
functions and data structures. We have implemented a total
correctness verification tool for the OCaml functional lan-
guage based on the proposed method, and confirmed that
it can verify, with a low annotation burden, the total cor-
rectness of widely used standard libraries of the OCaml lan-
guage as well as tricky higher-order recursive functions that
were used as benchmarks in previous studies.

1. Introduction
Recent years have witnessed intense development of fully-
or semi-automated methods for path-sensitive verification of
higher-order functional programs [20, 22, 31, 38, 40, 42, 43].
Interestingly, most of the methods are based on refinement
type systems [8, 44, 45], where specifications and invari-
ants of the functions of a given program are expressed as
refinement types, namely dependent types equipped with
first-order formulas of some efficiently decidable underly-
ing logic such as the quantifier-free theory of linear integer
arithmetic (QFLIA). Thus, as summarized in Table 1, refine-
ment type systems are considered as axiomatic semantics for
higher-order functional programs (cf. Hoare logics for im-
perative programs), and an automated verification of higher-
order functional programs is often formalized as refinement
type inference via Horn constraint generation [8, 40] (cf.
weakest precondition generation for imperative programs).

Refinement types are particularly amenable to automatic
checking and inference because typing constraints can be

expressed as logical formulas (in the form of Horn clauses
with predicate variables) as with verification conditions in
Hoare logics, and therefore well-integratable with off-the-
shelf SMT solvers [7] for type checking and Horn constraint
based invariant synthesizers such as [14, 15, 17, 26, 32, 38–
41] for type inference (see [12] for an overview of the Horn
constraint based approach to verification, which is actually
not limited to functional programs). In fact, as shown in
Table 1, there have been proposed fully- or semi-automated
refinement type inference methods [20, 22, 31, 38, 40, 42].

The refinement type systems underlying these automated
methods, however, are only for partial correctness verifica-
tion and cannot be used to verify the termination of higher-
order functional programs. Though there are refinement
types systems for total correctness verification (i.e., partial
correctness and termination verification) of functional pro-
grams [43, 44], they are not fully automated and sometimes
put on users a heavy burden of annotating their programs
with complex invariants and ranking functions (i.e., termina-
tion arguments). In Table 1, “fully-automated” indicates that
a refinement type inference method is integrated with rank-
ing function synthesizers such as [23, 28, 30] for termination
verification and invariant synthesizers for partial correctness
verification. “Semi-automated” indicates that an inference
method relies on hints of invariants and ranking functions
that are user-supplied and/or syntactically extracted from
the program.

There exist other approaches to fully-automated termina-
tion verification of higher-order functional programs such as
transition invariants [23], size-change analysis [19, 34–36],
and term rewriting [11]. These methods, however, still have
a room for improvements with respect to analysis precision
and efficiency, as we will discuss in Section 8. This situation
is in stark contrast to termination verification of first-order
programs, where much work has been done on automated
termination verification [4, 5, 10, 16, 24, 29].

To overcome the situation, this paper presents a novel
refinement type system for total correctness verification
of ML-like (i.e., higher-order, typed, and strict) functional
programs with algebraic data types (ADTs). The main ad-
vantage of the system is that it is carefully designed to-
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Higher-Order Functional Imperative
Refinement type systems (partial correctness)

Axiomatic Semantics (Partial Correctness) Fully- Semi- Non-automated Hoare logic (partial correctness)
[22, 38, 40, 42] [20, 31] [8, 45]
Refinement type systems (total correctness)

Axiomatic Semantics (Total Correctness) Fully- Semi- Non-automated Hoare logic (total correctness)
this paper [43] [44]

Predicate Transformer Semantics Horn constraint generation [21, 40] Weakest precondition generation

Table 1. Semantics for verification of imperative and higher-order functional programs

ward fully-automated type inference. In fact, we present a
Horn constraint based type inference method for the sys-
tem, which automatically infers necessary invariants and
ranking functions over higher-order recursive functions and
algebraic data structures as well as integers. The inference
method internally generates and solves typing constraints
expressed as Horn clause and well-foundedness constraints.1

We have implemented a type checking and inference tool
based on the proposed method, and confirmed that it can
verify, with a modest annotation burden, the total correct-
ness of widely used OCaml standard libraries including List
and Map modules and small but tricky higher-order recursive
functions obtained from previous studies that require precise
analysis of the higher-order control flow and/or synthesis of
complex ranking functions.

The rest of the paper is organized as follows. Section 2
gives an informal overview of our type system and type in-
ference method. Section 3 explains our target ML-like lan-
guage L with ADTs. Section 4 formalizes a refinement type
system ⊢P for partial correctness verification of programs in
the language L. We then extend ⊢P to obtain our refinement
type system ⊢T for total correctness verification in Section 5.
In Section 6, we present our type inference method for the
system ⊢T . We report on our implementation and experi-
ment results in Section 7. We compare our method with re-
lated work in Section 8 and conclude the paper in Section 9.

2. Overview
This section gives an informal overview of our refinement
type system ⊢T and a type inference method of ⊢T for to-
tal correctness verification of ML-like higher-order func-
tional programs with ADTs. Example programs are written
in OCaml syntax.

Recursive functions on integers As a first example, let us
consider a simple recursive function on integers

let rec sum x = if x<=0 then 0 else x+sum(x-1)

and its total correctness specification “for any integer argu-
ment n, the evaluation of sum n always terminates and the
return value is not less than the argument n”. As in ordinary

1 The extension of Horn clause constraints with well-foundedness con-
straints itself was originally proposed in [30].

refinement type systems, our system expresses the specifica-
tion as a refinement type

τsum ≜ (x : int) → {y : int | y ≥ x} .

Here, y represents the return value of sum when applied to
the argument x. The total correctness verification comprises
(1) the partial correctness and (2) termination verification.

Our method automatically verifies (1) the partial correct-
ness of sum by inferring its inductive invariant sufficient to
establish the specification τsum and (2) the termination of the
evaluation of sum n for any argument n of the type int, by
inferring a ranking function rsum(x) ≜ x that witnesses the
well-foundedness of sum’s recursion relation

Recsum ≜ {(x, x− 1) | x > 0} ,

which represents the relational invariant between the argu-
ment x of a call to sum and the argument x− 1 of its imme-
diate recursive call in the else branch, where x > 0 always
holds. A ranking function r represents the well-founded rela-
tion wfrel(r) ≜ {(x, x′) | r(x) > r(x′) ≥ 0}. Note that rsum
witnesses the well-foundedness of Recsum because Recsum ⊆
wfrel(rsum), and consequently the termination of sum is con-
cluded because an infinite recursive call sequence of sum

would cause an infinite descent in the argument values with
respect to the well-founded relation Recsum, which is a con-
tradiction.

Our refinement type inference method generates Horn
clause and well-foundedness constraints on predicate vari-
ables that represent inductive invariants and recursion rela-
tions of the functions of the given program. For the function
sum, we obtain the following set Wsum of Horn clause and
well-foundedness constraints: P (x, 0) ⇐ x ≤ 0, P (x, x+ y) ⇐ P (x− 1, y) ∧ x > 0,

Recsum(x, x
′) ⇐ x′ = x− 1 ∧ x > 0,

y ≥ x ⇐ P (x, y), WF (Recsum)


Here, the predicate variables Recsum and P respectively rep-
resent the recursion relation and an inductive invariant be-
tween the argument and the return value of sum. The well-
foundedness constraint WF (Recsum) requires that the recur-
sion relation Recsum is well-founded. Thanks to the use of in-
variant and ranking function synthesis techniques, our Horn
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constraint solving method presented in Section 6.2 automat-
ically solves the constraint set and obtains an inductive in-
variant P (x, y) ≡ y ≥ x, which says whenever a value y
is returned it is not less than the argument x, as well as the
ranking function rsum as a certificate of the well-foundedness
of Recsum.

Our method can automatically verify the termination of
more complex functions such as McCarthy’s 91 function.

let rec mc91 x =

if x>100 then x-10 else mc91 (mc91 (x+11))

From the program, the following constraint set is generated:

P (x), P (x) ⇐ P (x− 11) ∧ x ≤ 111,
P (x) ⇐ P (n) ∧Q(n+ 11, x) ∧ n ≤ 100,
Q(n, r) ⇐ P (n) ∧ r ≥ 91 ∧ n = 10 + r,
Q(n, r) ⇐ Q(n+ 11, r′) ∧Q(r′, r) ∧ P (n) ∧ n ≤ 100,
Recmc91(n, n

′) ⇐ P (n) ∧ n ≤ 100 ∧ n′ = n+ 11,
Recmc91(n, n

′) ⇐ P (n) ∧Q(n+ 11, n′) ∧ n ≤ 100,
WF (Recmc91)


Here, the predicate variables Recmc91, P , and Q respectively
represent the recursion relation, the pre- and post-conditions
of mc91. Our method automatically solves the constraint set
and obtains a tricky ranking function rmc91(x) = 111 − x
and an inductive invariant of the function mc91 in the form
of the refinement type

(x : int) →
{
y : int

∣∣∣∣ y ≥ 91 ∧ y ≥ x− 10 ∧
(y = 91 ∨ y = x− 10)

}
that is strong enough to show Recmc91 ⊆ wfrel(rmc91). Note
here that the termination verification itself involves invariant
synthesis as shown by this example.

Recursive functions on algebraic data structures Let us
consider the following list manipulating program merge ob-
tained from the standard library of the OCaml language.

let rec merge cmp l1 l2 = match l1, l2 with

| [], l2 -> l2 | l1, [] -> l1

| h1 :: t1, h2 :: t2 ->

if cmp h1 h2 <= 0 then h1::merge cmp t1 l2

else h2::merge cmp l1 t2

The constraint set generated from the program is over not
only integers but also lists. Such constraints, however, can-
not be handled by the previous Horn constraint based in-
variant and ranking function synthesis methods. We there-
fore propose novel techniques to lift the previous methods
for solving Horn clause and well-foundedness constraints
over numerical values to those for solving constraints over
higher-order functions and algebraic data structures: we in-
troduce and use size functions for abstracting terms of ADTs
in the constraint set into integer terms, in order to obtain an
ADT-free over-approximated constraint set that can be han-
dled by the previous methods. For merge, we may use the

size function

sizelist([ ]) = 1 sizelist(h :: t) = 1 + sizelist(t)

on lists that returns the syntactic size of the argument. Our
method then automatically verifies the termination of the
program by synthesizing a ranking function rmerge(cmp, l1, l2) =
sizelist(l1)+sizelist(l2) for merge. As shown in Section 7,
in experiments on the OCaml List and Map modules that
manipulate algebraic data structures, the termination of all
the functions of the modules was verified by inferring rank-
ing functions on the syntactic sizes of the data structures,
though our method can automatically synthesize other size
functions if necessary (see below for examples and Section 6
for technical details).

Higher-order functions We need a further twist to pre-
cisely handle higher-order functions. Let us consider the fol-
lowing higher-order terminating program.

let k1 g () = g () - 1

let k2 n () = n

let rec f g () = if g()<=0 then () else f(k1 g)()

let main n = f (k2 n) ()

The termination verification of the function f requires a
ranking function over the function argument g because each
recursive call to f updates the function argument g: the ini-
tial closure k2 n passed as the argument g at main returns
the integer n when applied to () and each recursive call to f

updates g to g′ = k1 g such that g′ () = g ()− 1. Therefore,
g () eventually returns a non-positive integer and f termi-
nates. So that we can apply existing numerical ranking func-
tion synthesis techniques to termination verification of such
higher-order functions, we introduce an ADT that represents
closures possibly passed to the argument. For the above ex-
ample, we obtain the ADT for the function argument g:

type cls = K1 of cls | K2 of int

Because g has the ordinary ML type unit → int and any
closure of this type is of the form k1m (k2 n) for some
integers n and m ≥ 0, the ADT is defined as above using the
constructors K1 and K2 corresponding to k1 and k2. We then
consider the following program obtained from the previous
one by inserting a ghost parameter (indicated by the square
brackets) cg of f representing the algebraic data structure
encoding the closures passed as the function argument g:2

let k1 g () = g () - 1

let k2 n () = n

let rec f [cg] g () =

if g () <= 0 then () else f [K1 cg] (k1 g) ()

let main n = f [K2 n] (k2 n) ()

2 Our refinement type system formalized in Sections 4 and 5 actually does
not introduce such ghost parameters in the program-level but instead repre-
sents them in the type-level using function refinement types.
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By using the size function for the ADT defined by

s(K1 c) = s(c)− 1 s(K2 n) = n,

we obtain the ranking function rf(cg , ()) = s(cg) witness-
ing the termination of the higher-order program. Our imple-
mentation reported in Section 7 automatically synthesized
the size and ranking functions.

For another example of higher-order programs, consider
the following terminating one.

let app f x = f x

let rec g x = if x>0 then app g (x-1) else ()

Note that g is recursively called indirectly via the higher-
order function app. To verify the termination of the function
g, we need to precisely know what values are passed indi-
rectly to g by app. Note that the evaluation of app g (x− 1)
only passes x− 1 to g and therefore the evaluation of g n al-
ways terminates for any n. However, as pointed out by Unno
et al. [42], ordinary refinement type systems underlying au-
tomated verification methods cannot express that property
of app unless a ghost (in their method integer) parameter is
inserted before the function argument f of the higher-order
function app. To remedy the limitation of the ordinary re-
finement type systems, we generalize Unno et al.’s approach:
we introduce the ADT

type cls = Grec of int | G | App of cls

that encodes the closures passed as the function argument
f to app, in a similar manner to the previous example,
and insert a ghost ADT parameter cf before the function
argument f of app to obtain

let app [cf] f x = f x

let rec g x =

if x>0 then app [Grec x] g (x-1) else ()

Here, both of the constructors Grec and G correspond to g

but the former is used in the definition of g and the latter is
used outside the definition. Note also that the algebraic data
structure Grec x encoding the recursive occurrence of g in
the definition of g records the argument x passed to g. By
using the size function

s(Grec x) = x s(G) = 0 s(App c) = s(c)

for the ADT, we obtain the ranking function rg(x) = x and
the refinement type

(cf : cls) → ({x : int | 0 ≤ x < s(cf )} → unit) →
{x : int | 0 ≤ x < s(cf )} → unit

for app that witness the termination of the higher-order
program. Our implementation automatically synthesized the
above refinement type as well as the size and ranking func-
tions.

E[op(ñ)] −→ E[JopK(ñ)] (E-OP)

|x̃| = |ṽ|
E[(funℓf x̃. e) ṽ] −→ E[[funℓf x̃. e/f, ṽ/x̃]e]

(E-APP)

E[case Cj(ṽj) of {Ci(x̃i) → ei}mi=1] −→ E[[ṽj/x̃j ]ej ]
(E-CASE)

E[let x = v in e] −→ E[[v/x]e] (E-LET)

Figure 1. The operational semantics of the language L

3. The Target Language L
This section presents an ML-like strict higher-order func-
tional language with algebraic data types (ADTs) as the tar-
get of our verification method. The syntax is defined by:

(expressions) e ::= x | n | op(e1, . . . , ear(op))
| funℓf x̃. e | e1 e2
| C(e1, . . . , ear(C))
| case e of {Ci(x̃i) → ei}mi=1

| let x = e1 in e2
(values) v ::= n | (funℓf x̃. e) ṽ | C (ṽ)

(eval. contexts) E ::= [ ] | E e | v E | C(ṽ, E, ẽ)
| case E of {Ci(x̃i) → ei}mi=1

| let x = E in e
(ML types) A ::= int | A1 → A2 | D

Here, meta-variables x and f range over variables. n and op
respectively represent integer constants and operations. op
includes, for example, +, <, and =. D and C respectively
represent ADTs and their constructors. We assume that D
includes the unit type unit, the Boolean type bool, the list
type list, and user-defined ADTs. Accordingly, C includes
the unit value (), the Boolean values true and false, the
list constructors [ ] and (::), and those for user-defined ADTs.
We write ar(op) and ar(C) respectively for the arity of op
and C. We write x̃ (resp. ṽ) for a sequence of variables (resp.
values). The length of the sequence x̃ is denoted by |x̃|. An
expression funℓf x̃. e represents a recursive function an-
notated with a unique label ℓ, where |x̃| ≥ 1 and f repre-
senting the function itself may occur recursively in the body
e. We define ar(ℓ) to be |x̃|. We write fvs(e) for the set of
free variables occurring in e. We assume that expressions
are well-typed under the ordinary ML type system ⊢. We
also assume that the ML type of the constructors for user-
defined ADTs is first-order. This restriction is essential be-
cause without this, funℓf x̃. e may call itself recursively via
a function argument in x̃ even if f does not occur in e. In
the definition of values, (funℓf x̃. e) ṽ represents a function
closure that satisfies |ṽ| < |x̃|. The call-by-value operational
semantics of the language is shown in Figure 1. There, −→
is a one-step evaluation relation, which is deterministic, andJopK represents the integer function denoted by op. We often
write −→∗ for the reflexive and transitive closure of −→.
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4. Refinement Type System ⊢P for Partial
Correctness Verification

We now present our refinement type system ⊢P for partial
correctness verification. The syntax of types is defined by:

(refinement types) τ ::= {x : T | ϕ}
T ::= int | (x : τ1) → τ2 | D

(type environments) Γ ::= x1 : τ1, . . . , xm : τm
(formulas) ϕ ::= t1 = t2 | t1 ≤ t2 | ⊤ | ⊥ | ¬ϕ

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2

(terms) t ::= x | n | t1 + t2 | n · t
| C(t1, . . . , tar(C)) | s(t)

(predicates) p ::= λx̃.ϕ

A refinement type {x : T | ϕ} equipped with a refinement
formula ϕ represents the type of the values x of the type T
that satisfies ϕ. The scope of x is within ϕ and T . We often
abbreviate {x : T | ⊤} as T . Note that T can be a function
type unlike in ordinary refinement type systems. (x : τ1) →
τ2 is the type of functions that take an argument x of the
type τ1 and return a value of the type τ2, where the scope of
x is within τ2. For example, (x : int) → {y : int | y ≥ x}
is the type of functions whose return value y is not less
than the argument x. We abbreviate (x : τ1) → τ2 as
τ1 → τ2 if x does not occur in τ2. We write fvs(τ) for the
set of free variables that occur in τ . We define dom(Γ) =
{x | x : τ ∈ Γ} and Γ(x) = τ if x : τ ∈ Γ.

In this paper, we adopt refinement formulas in the quantifier-
free theory of linear integer arithmetic (QFLIA) and equal-
ity on the terms of ADTs with size functions (ranged over
by the meta-variable s) that map values of some ADT D
to integers. For example, the size function len on lists
that returns the length is defined by len([ ]) = 0 and
len(x :: l) = 1 + len(l). We assume that size functions
on an ADT D are catamorphisms on D (see Section 6.2.1
for more details). The formulas ⊤ and ⊥ respectively repre-
sent the tautology and the contradiction. We call a predicate
p well-founded and write WF (p), if the arity of p is 2 × n
for some n and there is no infinite sequence t̃1, t̃2, . . . such
that

∣∣t̃i∣∣ = n and p(t̃i, t̃i+1) holds for all i ≥ 1.
The typing rules for the system ⊢P are shown in Figure 2.

A type judgment Γ ⊢P e : τ means that an expression e has
a refinement type τ under a refinement type environment Γ.
A subtype judgment Γ ⊢P τ1 <: τ2 indicates that τ1 is a
subtype of τ2 under Γ. type(op) in the rule P-OP repre-
sents the refinement type of op that abstracts the behavior
of the function JopK soundly. For example, type(+) = (x :
int) → (y : int) → {z : int | z = x+ y}. type(C) in
the rule P-CON represents the refinement type of C. By de-
fault, type(C) is defined by (x̃ : Ã) → {x : D | x = C(x̃)}
if the ordinary ML type of C is Ã → D. Our implementation
reported in Section 7 also allows users to refine the argument
types Ã with pre-conditions (see an explanation of experi-
ments on the OCaml Map module in Section 7 for an exam-
ple). All the rules except P-FUN are essentially the same as

Γ(x) = {ν : T | ϕ}
Γ ⊢P x : {ν : T | ν = x}

(P-VAR)

Γ, x̃ : τ̃ , f : PLift (x̃ : τ̃ ; τ ; ℓ; ϵ) ⊢P e : τ

Γ ⊢P funℓf x̃. e : PLift (x̃ : τ̃ ; τ ; ℓ; ϵ)
(P-FUN)

Γ ⊢P e1 : τ1 → τ2 Γ ⊢P e2 : τ1

Γ ⊢P e1 e2 : τ2
(P-APP)

Γ ⊢P n : {ν : int | ν = n} (P-INT)

type(op) = (x1 : τ1) → · · · → (xar(op) : τar(op)) → τ
Γ, e1 : τ1, . . . , ei−1 : τi−1 ⊢P ei : τi (for each i = 1, . . . , ar(op))

Γ ⊢P op(e1, . . . , ear(op)) : τ
(P-OP)

type(C) = (x1 : τ1) → · · · → (xar(C) : τar(C)) → τ
Γ, e1 : τ1, . . . , ei−1 : τi−1 ⊢P ei : τi (for each i = 1, . . . , ar(C))

Γ ⊢P C(e1, . . . , ear(C)) : τ
(P-CON)

Γ ⊢P e1 : τ1 Γ, x : τ1 ⊢P e2 : τ2 x ̸∈ fvs(τ2)

Γ ⊢P let x = e1 in e2 : τ2
(P-LET)

Γ ⊢P e : {x : D | ϕ1} type(Ci) = (x̃i : τ̃i) → {x : D | ϕ2}
Γ, x̃i : τ̃i, x : {x : D | ϕ1 ∧ ϕ2} ⊢P ei : τ

fvs(τ) ∩ {x̃i, x} = ∅ (for each i ∈ {1, . . . ,m})
Γ ⊢P case e of {Ci(x̃i) → ei}mi=1 : τ

(P-CASE)

Γ ⊢P e : τ ′ Γ ⊢P τ ′ <: τ

Γ ⊢P e : τ
(P-SUB)

|= JΓK ∧ ϕ1 ⇒ ϕ2

x : fresh Γ, x : {x : unit | ϕ1} ⊢ T1 <: T2

Γ ⊢ {ν : T1 | ϕ1} <: {ν : T2 | ϕ2}
(S-REF)

Γ ⊢ T <: T (S-BASE)

Γ ⊢ τ ′1 <: τ1 Γ, ν : τ ′1 ⊢ τ2 <: τ ′2
Γ ⊢ (ν : τ1) → τ2 <: (ν : τ ′1) → τ ′2

(S-FUN)

PLift (x : τ ; τ ′; ℓ; ỹ) =
{
g : (x : τ) → τ ′

∣∣∣ g = ℓ(|ỹ|)(ỹ)
}

PLift (x : τ, x̃ : τ̃ ; τ ′; ℓ; ỹ) ={
g : (x : τ) → PLift (x̃ : τ̃ ; τ ′; ℓ; ỹ, x)

∣∣∣ g = ℓ(|ỹ|)(ỹ)
}

Jx1 : {ν : T1 | ϕ1} , . . . , xn : {ν : Tn | ϕn}K = n∧
i=1

[xi/ν]ϕi

Figure 2. The derivation rules for Γ ⊢P e : τ & Γ ⊢ τ <: τ ′
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the ones proposed in previous work [8, 20, 31, 40, 42]. In
P-FUN, PLift (x̃ : τ̃ ; τ ; ℓ; ϵ) plays an essential role for pre-
cisely reasoning about higher-order functions. In the defini-
tion of PLift , ℓ(i) are the constructors of the special ADT
cls explained in Section 2 for encoding all the possible func-
tion closures. For each recursive function with the label ℓ,
we introduce constructors ℓ(0), . . . , ℓ(ar(ℓ)−1) of cls , which
are used to encode non-recursive occurrences of the func-
tion (recall K1, K2, G, and App in Section 2). If the func-
tion labeled with ℓ has the type A1 → · · · → Aar(ℓ) → A,
the ML type environment for the constructors is defined by
{ℓ(i) : A′

1 → · · · → A′
i → cls | i = 0, . . . , ar(ℓ) − 1},

where A′
j = cls if Aj is a function type and A′

j = Aj other-
wise. Note that the types thus defined are first-order.

5. Refinement Type System ⊢T for Total
Correctness Verification

In this section, we modify ⊢P to obtain a refinement type
system ⊢T for total correctness verification. The derivation
rules for ⊢T are almost the same as the ones for ⊢P shown in
Figure 2 except that P-FUN is replaced by the rule T-FUN:

|= WF (λx̃ỹ.ϕ) fvs(ϕ) ⊆ {x̃, ỹ}
{x̃} ∩ {ỹ} = ∅ (x̃ : τ̃) → τ = (ỹ : τ̃ ′) → τ ′

Γ, x̃ : τ̃ , f : TLift (ỹ : τ̃ ′;λx̃ỹ.ϕ; τ ′; ℓ; x̃) ⊢T e : τ

Γ ⊢T funℓf x̃. e : TLift (x̃ : τ̃ ;λx̃ỹ.⊤; τ ; ℓ; x̃)

TLift (x : {y : T | ϕ} ; p; τ ′; ℓ; ỹ) ={
g : (x : {y : T | ϕ ∧ p(ỹ, y)}) → τ ′

∣∣∣ g = ℓ(|ỹ|)(ỹ)
}

TLift (x : τ, x̃ : τ̃ ; p; τ ′; ℓ; ỹ) ={
g : (x : τ) → TLift (x̃ : τ̃ ; p; τ ′; ℓ; ỹ, x)

∣∣∣ g = ℓ(|ỹ|)(ỹ)
}

Here, TLift plays an essential role for checking the well-
foundedness of the recursion relation as well as precisely
reasoning about higher-order functions. For total correctness
verification, cls is extended as follows. For each recursive
function with the label ℓ, we introduce new constructors
ℓ(ar(ℓ)), . . . , ℓ(2×ar(ℓ)−1) of cls , which are used to encode
recursive occurrences of the function (recall Grec in Sec-
tion 2). If the function with the label ℓ has the ordinary ML
type A1 → · · · → Aar(ℓ) → A, the ML type environment
for the new constructors is defined by{
ℓ(ar(ℓ)+i) :

A′
1 → · · · → A′

ar(ℓ) →
A′

1 → · · · → A′
i → cls

∣∣∣∣ i = 0, . . . , ar(ℓ)− 1

}
,

where A′
j = cls if Aj is a function type and A′

j = Aj oth-
erwise. The first ar(ℓ) arguments represent the actual argu-
ments passed to the function, and the remaining arguments
are those passed toq a recursive call of the function.

We now show properties of the type system ⊢T . To this
end, we define the denotational semantics of types.

J{x : int | ϕ}KT = {e | ⊢ e : int, ∃v.e −→∗ v∧ |= [JvK/x]ϕ}J{f : (x : τ1) → τ2 | ϕ}KT ={
e

∣∣∣∣ ⊢ e : ⌊τ1 → τ2⌋, ∃v.e −→∗ v∧ |= [JvK/f ]ϕ∧
∀v1 ∈ Jτ1K.e v1 ∈ J[JvK/f, Jv1K/x]τ2KT

}
J{x : D | ϕ}KT = {e | ⊢ e : D, ∃v.e −→∗ v∧ |= [JvK/x]ϕ}JnK = n, J(funℓf x̃. e) ṽK = ℓ(|ṽ|)(JṽK), JC(ṽ)K = C(JṽK)
where ⌊τ⌋ represents the ML type obtained by erasing re-
finement formulas in the refinement type τ . The denota-
tion JτKT of τ intuitively represents the set of non-diverging
expressions that satisfy the partial correctness specification
represented by τ . JvK maps the program value v to the corre-
sponding term in the underlying logic. Note that a function
closure (funℓf x̃. e) ṽ is mapped to an ADT term ℓ(|ṽ|)(JṽK).

The progress theorem is proved in a standard manner.

Theorem 1 (Progress). If ⊢T e : τ , then either e is a value
or e −→ e′ for some e′.

We can prove the following in a similar manner to [43].

Lemma 1 (Denotaion Typing). If ⊢T e : τ then e ∈ JτKT .

The substitution lemma and the type preservation theo-
rem are obtained by Lemma 1.

Theorem 2 (Preservation). If ⊢T e : τ ∧e −→ e′, ⊢T e′ : τ .

The soundness of ⊢T is obtained as a corollary of Lemma 1.

Corollary 1 (Soundness). If ⊢T e : τ , then e cannot diverge.

6. Type Inference Method for ⊢T

We propose a refinement type inference method for the sys-
tem ⊢T of total correctness verification. Following the pre-
vious approach, we reduce refinement type inference into
constraint solving [21, 40]. The constraints generated from
a given program in our setting are represented by Horn
clauses over integers and ADTs. In addition, we handle
well-foundedness constraints to ensure the termination of the
given program.

So that we can reuse existing numerical invariant and
ranking function synthesis techniques to solve such con-
straints, we propose a technique called size abstraction for
abstracting terms of ADTs into integer terms using size func-
tions, which are catamorphisms over ADTs. We also propose
a counterexample guided method for automatically synthe-
sizing size functions if necessary.

6.1 Constraint generation
This section formalize our Horn constraint solving problems
and explains our reduction from refinement type inference to
constraint solving based on the previous methods [21, 40].
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Horn constraint solving problems A Horn clause Con-
straint Set (HCS) H is a finite set {hc1, . . . , hcm} of Horn
clauses. A Horn clause hc is defined to be h ⇐ b where

• a head h is of the form either P (t̃) or ϕ, and
• a body b is of the form P1(t̃1) ∧ . . . ∧ Pm(t̃m) ∧ ϕ.

Recall that ϕ represents a formula over ADTs and integers
in this paper. A Horn clause with the head of the form P (t̃)
(resp. ϕ) is called a definite clause (resp. a goal clause). We
abbreviate a Horn clause h ⇐ ⊤ as h. We write fvs(hc) for
the set of free variables that occur in hc. A Horn clause
and Well-foundedness Constraint Set (HWCS) W is the
union of an HCS H and a well-foundedness constraint set
{WF (P1), . . . ,WF (Pm)}. The set of predicate variables
that occur in an HWCS W is denoted by pvs(W). We say
that W is ADT-free if all terms occurring in W are not of
an ADT. The dependency relation ◁W is defined to be the
relation that, for all P,Q ∈ pvs(W), Q◁W P if and only if
Q(t̃1) ⇐ · · · ∧ P (t̃2) ∧ · · · ∈ W . We write ◁+W for the tran-
sitive closure of ◁W . We say that P is recursive if P ◁+W P .
We call W recursion-free if pvs(W) contains no recursive
predicate variable. A predicate substitution θ for W is a map
from each predicate variable P ∈ pvs(W) to a closed predi-
cate λx1, . . . , xar(P ).ϕ. We write θW to denote the applica-
tion of a predicate substitution θ to W . We write dom(θ) to
represent the domain of θ. We call a predicate substitution θ
a solution of W , if |= θhc for each hc ∈ W and θP is well-
founded for each P such that WF (P ) ∈ W . An HWCS
solving problem is the problem of finding a solution for a
given W . A Horn clause and Well-foundedness Constraint
Set with Existentially quantified parameters (EHWCS) is de-
fined to be ∃x̃.W , where the parameters x̃ are shared by the
Horn clauses in W . For each hc ∈ W , the free variables in
fvs(hc) \ {x̃} are universally quantified implicitly. We call
a pair (θ, σ) of predicate and term substitutions a solution
of ∃x̃.W , if dom(σ) = {x̃} and θ is a solution of σW . An
EHWCS solving problem is the problem of finding a solution
for a given ∃x̃.W . A Horn clause Constraint Set with Exis-
tentially quantified parameters (EHCS) is similarly defined
to be ∃x̃.H.

Reduction from refinement type inference Our method
reduces a refinement type inference problem into an HWCS
solving problem in a similar manner to an existing refine-
ment type inference method [40]. Given a program e, our
method first prepares a refinement type template τℓ and a
predicate variable Recℓ for each function funℓf x̃. e′ that
occur in e. The type template τ contains predicate variables
that represent unknown predicates for refinement, and the
predicate variable Recℓ represents the unknown recursion re-
lation of the function. Our method then generates an HWCS
by type-checking e using the type templates and collecting
Horn clause constraints of the form JΓK∧ϕ1 ⇒ ϕ2 from the
applications of the rule S-REF and well-foundedness con-
straints of the form WF (Recℓ) from the applications of the

rule T-REF. We write Gen(e) for the HWCS thus generated
from e. We can show the soundness of the reduction in the
same way as in [40].

Theorem 3 (Soundness of Reduction). Let e be a program.
If Gen(e) has a solution, there is τ such that ⊢T e : τ holds.

Example 1. Consider the following functions on lists:

let rec combine l1 l2 = match (l1, l2) with

| [], [] -> []

| (a1::l1), (a2::l2) -> (a1,a2)::combine l1 l2

| _, _ -> assert false

let main l = combine l l

We then obtain the refinement type templates (l : α list) →
(α ∗ α) list for main and (l1 : β list) → (l2 :
{l2 : γ list | P (l1, l2)}) → {r : (β ∗ γ) list | Q(l1, l2, r)}
for combine with predicate variables P and Q which re-
spectively represent unknown pre- and post-conditions of
combine to be inferred.3 We then obtain the following
HWCS Wcombine (after simplification):

1 : Q([ ], [ ], [ ]) ⇐ P ([ ], [ ]),
2 : Q(x1 :: l1, x2 :: l2, (x1, x2) :: r)

⇐ P (x1 :: l1, x2 :: l2) ∧Q(l1, l2, r),
3 : P (l1, l2) ⇐ P (x1 :: l1, x2 :: l2),

4 : ⊥ ⇐ P (l1, l2) ∧
(

l1 = [ ] ∧ l2 = x2 :: l′2∨
l1 = x1 :: l′1 ∧ l2 = [ ]

)
,

5 : Reccomb(x1 :: l1, x2 :: l2, l1, l2) ⇐ P (x1 :: l1, x2 :: l2),
6 : WF (Reccomb),
7 : P (l, l)


Here, the labels 1–7 are not a part of the constraint set.
Reccomb represents the recursion relation of combine. The
constraint 1 is obtained from the first branch of the match-
expression in the definition of combine. The constraints 2
and 3 are from the second branch, and the constraint 4 is
from the third branch and requires that this branch is un-
reachable. The constraint 5 defines the recursion relation of
combine and the constraint 6 requires its well-foundedness.
The constraint 7 is from the definition of main.

6.2 Constraint solving
In this section, we describe our constraint solving method
for HWCSs. The overall structure of the method is shown
in Figure 3. Our method takes an HWCS W over inte-
gers and ADTs. In order to exploit existing techniques for
solving a recursion- and ADT-free EHCS, our method re-
duces the original HWCS solving problem into a recursion-
and ADT-free EHCS solving problem (Steps 1-3 in Fig-
ure 3). The reduction needs to remove (1) ADTs, (2) well-
foundedness constraints, and (3) recursive predicate vari-
ables from the original constraint set W . To this end, we
use (1) size abstraction SAbs (Step 1 in Figure 3, see Sec-
tion 6.2.1 for details), (2) well-foundedness constraint elim-
ination Elim (Step 2, Section 6.2.2), and (3) Horn clause
3 For simplicity, predicate variables for refining function types are omitted.
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HWCS

Step 1: Size Abstraction
(Section 6.2.1)

Solve
(Section 6.2.4)

candidate
counterexample

Genuine?
(Section 6.2.6)

Recursion- and
ADT-free EHCS

Candidate
solution

yesno

Feasible?
(Section 6.2.5)

Counterexample Solution

yes yes

nono

Step 4:

Step 5 (a):Step 5 (b):

ADT-free EHWCS

Step 2: Well-foundedness
Constraint Elimination

(Section 6.2.2)

ADT-free EHCS

Step 3: Unwinding
(Section 6.2.3)

Figure 3. Overall structure of our constraint solving method

unwinding Unwind (Step 3, Section 6.2.3), respectively.
SAbs takes an HWCS and a map Tsize from ADTs to se-
quences of (possibly template) size functions, and returns
an ADT-free EHWCS. Elim takes an EHWCS and a map
Trank from predicate variables to sequences of (possibly
template) linear ranking functions, and returns an EHCS.
Unwind takes an EHCS and an integer k ≥ 0 that rep-
resents the degree of constraint unwinding, and returns a
recursion-free EHCS. With the three abstractions, we obtain
a recursion- and ADT-free EHCS A(W, Tsize, Trank, k) =
Unwind(Elim(SAbs(W, Tsize), Trank), k).

We then use existing techniques to solve the reduced
constraint set A(W, Tsize, Trank, k) (Step 4, Section 6.2.4).

• If a solution (θ, σ) of the reduced constraint set is found,
we construct a set of candidate solutions for the original
constraint set W using (θ, σ) as a hint. We then check
whether there is a genuine solution for W in the set (Step
5(a), Section 6.2.5).

If it is the case, our method returns it as a solution
of W , from which our method constructs refinement
types, size functions, and ranking functions of the
original program.

Otherwise, it is the case that the parameter k for con-
straint unwinding is not sufficient to obtain a precise
enough abstraction. We therefore refine the abstrac-
tion by incrementing the parameter k, and repeat the
entire process from Step 1 to obtain new candidates.

• Otherwise, we obtain a counterexample witnessing the
unsolvability of the reduced constraint set A(W, Tsize, Trank, k).
The counterexample is a (preferably minimal) unsolv-
able subset ∃x̃.Hcex of A(W, Tsize, Trank, k) containing
just one goal clause. The unsolvability of the reduced
A(W, Tsize, Trank, k), however, does not imply that of the
original W . We therefore construct a candidate coun-
terexample for W corresponding to ∃x̃.Hcex , and check
its feasibility.

If the candidate is feasible, our method returns it as a
counterexample witnessing the unsolvability of W .

Otherwise, it is the case that either the parameter Tsize

for size abstraction or the parameter Trank for well-
foundedness constraint elimination is not sufficient
to obtain a precise enough abstraction. We therefore
refine the abstraction by updating either Tsize or Trank

depending on the main cause of the infeasibility, and
repeat the entire process from Step 1.

6.2.1 Size abstraction
This section explains SAbs that takes an HWCS W and
a map Tsize from ADTs to sequences of (possibly tem-
plate) size functions, and returns an ADT-free EHWCS.4

The abstracted constraint set SAbs(W, Tsize) has a so-
lution only if the original W has one. We assume that
a size function s for an ADT D with the constructors
{C1, . . . , Cm} is a catamorphism over D of the form s(x) =
case x of {Ci(x̃i) → ei}mi=1 where ei’s are linear integer
expressions in which recursive calls to s are of the form
s(y) for some y ∈ {x̃i}. Our implementation reported in
Section 7, by default, assume that Tsize(D) contains a built-
in size function sizeD that returns the syntactic size of the
given value of D. For example, sizelist for list is de-
fined as sizelist(x) = case x of ([ ] → 1) | (h :: t →
1 + sizelist(t)).

We now explain how SAbs transforms a given definite
clause hc ∈ W . (We omit the explanation for goal clauses
because they are handled similarly.) For simplicity, we as-
sume that hc is of the form P0(x̃0) ⇐ P1(x̃1) ∧ · · · ∧
Pm(x̃m) ∧ ϕ where x̃i’s are distinct variables and ϕ is the
conjunction of atomic formulas such as t1 = t2, t1 ̸= t2,
and t1 < t2. This involves no loss of generality because
we can obtain this normal form using negation and dis-
junctive normal form transformations. SAbs transforms each
Pi(x̃i) by replacing each argument x ∈ {x̃i} of the ADT
D into a sequence x̃ of fresh integer variables that repre-
sents s1(x), . . . , sn(x) for Tsize(D) = s1, . . . , sn. We write
SAbs(s(x)) to denote the integer variable y ∈ {x̃} that rep-
resents s(x) and SAbs−1(y) to denote s(x) represented by
y. We also write Inv for the set of invariants of the integer
variables that represent some s(x). For example, if y repre-

4 All the existentially quantified parameters of SAbs(W, Tsize) are un-
known parameters of the template size functions in Tsize as well. Therefore,
SAbs returns an ADT-free HWCS if Tsize contains no template.
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sents sizelist(x), we have (y > 0) ∈ Inv . Our implementa-
tion automatically constructs Inv from the definition of size
functions using abstract interpretation [6].

The transformation for the ϕ-part is more involved. We
first transform ϕ into an equivalent5 formula

∧
(EADT ∪

DADT ∪ IINT) where EADT is a set of ADT equalities of
the form t1 = t2, DADT is a set of ADT disequalities of the
form t1 ̸= t2, and IINT is a set of integer constraints. We
here assume that all the integer terms in EADT ∪DADT are
variables. This can be enforced by purification: introduce a
fresh integer variable x for each non-variable integer term t
in EADT ∪DADT, replace the occurrences of t with x, and
add the constraint x = t to IINT.

We then perform size abstraction on
∧
(EADT ∪DADT ∪

IINT). Let X be the set of shared integer variables fvs(EADT∪
DADT) ∩ fvs(IINT), Ξ be the set of all the partitions of X ,
and ∼S be the equivalence relation on X corresponding to
a partition S ∈ Ξ. It then follows that

∨
S∈Ξ

∧
(EADT ∪

DADT ∪ IINT ∪ {x = y | x ∼S y} ∪ {x ̸= y | x ̸∼S y})
is equivalent to

∧
(EADT ∪ DADT ∪ IINT). We below

fix a partition S and explain how to perform size ab-
straction on each component CS = EADT ∪ DADT ∪
IINT ∪ {x = y | x ∼S y} ∪ {x ̸= y | x ̸∼S y}. In order to
obtain the set E of all the equalities implied by EADT ∪
{x = y | x ∼S y}, we compute its congruence closure [27].
We then check whether there is (t1 ̸= t2) ∈ DADT ∪
{x ̸= y | x ̸∼S y} such that (t1 = t2) ∈ E. If it is the
case, we replace

∧
CS with ⊥. Otherwise, we replace

∧
CS

with
∧
(SAbs(E, Tsize) ∪ IINT ∪ {x ̸= y | x ̸∼S y} ∪ Inv),

where SAbs(E, Tsize) applies the following SAbs for han-
dling equalities t1 = t2 in an element-wise fashion to E:

SAbs((t1 = t2), Tsize) ={ ∧
s∈{Tsize(D)} ev(s(t1)) = ev(s(t2)) (t1, t2 are D terms)

t1 = t2 (t1, t2 are int terms)

Here, ev(s(t)) represents the result of the partial evaluation
of s(t) with each occurrence of remaining s′(x) replaced by
SAbs(s′(x)).

Example 2. Recall Wcombine in Example 1. Let T1 =
{list 7→ ϵ} and T2 =

{
list 7→ sizelist

}
. We then obtain

the following HWCSs by using T1 and T2:

SAbs(Wcombine, T1) =



1 : Q() ⇐ P (),
2 : Q() ⇐ P () ∧Q(),
3 : P () ⇐ P (),
4 : ⊥ ⇐ P (),
5 : Reccombine() ⇐ P (),
6 : WF (Reccombine),
7 : P ()


5 Strictly speaking, ϕ is equivalent to ∃x̃.

∧
(EADT ∪DADT ∪ IINT)

where x̃ represents newly introduced fresh variables.

SAbs(Wcombine, T2) =

1 : Q(1, 1, 1) ⇐ P (1, 1),
2 : Q(1 + l1, 1 + l2, 1 + r)

⇐
(

P (1 + l1, 1 + l2) ∧Q(l1, l2, r)∧
l1 > 0 ∧ l2 > 0 ∧ r > 0

)
,

3 : P (l1, l2) ⇐ P (1 + l1, 1 + l2) ∧ l1 > 0 ∧ l2 > 0,
4 : ⊥ ⇐(

P (l1, l2) ∧ l1 > 0 ∧ l2 > 0 ∧ l′1 > 0 ∧ l′2 > 0∧
(l1 = 1 ∧ l2 = 1 + l′2 ∨ l1 = 1 + l′1 ∧ l2 = 1)

)
,

5 : Reccombine(1 + l1, 1 + l2, l1, l2) ⇐
P (1 + l1, 1 + l2) ∧ l1 > 0 ∧ l2 > 0,

6 : WF (Reccombine),
7 : P (l, l)


We can show the following correctness of SAbs .

Lemma 2. Suppose that (θ, σ) is a solution for SAbs(W, Tsize).
It then follows that σ(SAbs−1(θ)) is a solution for W .

6.2.2 Well-foundedness constraint elimination
This section explains Elim that takes an EHWCS ∃x̃.W and
a map Trank from predicate variables to sequences of (possi-
bly template) linear ranking functions, and returns an EHCS.
Elim replaces each well-foundedness constraint WF (P ) ∈
W with the goal clause wfrel(Trank(P ))(x̃) ⇐ P (x̃), where
wfrel(r̃) represents the well-founded relation denoted by the
sequence r̃ of linear ranking functions. Though any ranking
template from [25] can be adopted here, in the paper, we
henceforth use the following lexicographic ranking template
for simplicity:

wfrel(r1, . . . , rm)(x′
1, . . . , x

′
n, x1, . . . , xn)

=

r1(x̃
′) > r1(x̃) ≥ 0 ∨

r1(x̃
′) ≥ r1(x̃) ∧ r2(x̃

′) > r2(x̃) ≥ 0 ∨ · · · ∨(∧m−1
i=1 ri(x̃

′) ≥ ri(x̃)
)
∧ rm(x̃′) > rm(x̃) ≥ 0

Example 3. Recall Wsum in Section 2. Let Trank = {Recsum 7→
λx. c0 + c1x, λx. c2 + c3x}. We then obtain:

Elim(Wsum, Trank) = ∃c0, c1, c2, c3.
P (x, 0) ⇐ x ≤ 0, P (x, y) ⇐ P (x− 1, y − x) ∧ x > 0,
Recsum(x, x

′) ⇐ x′ = x− 1 ∧ x > 0,
⊥ ⇐ P (x, y) ∧ x > y,
wfrel(λx. c0 + c1x, λx. c2 + c3x)(x, x

′) ⇐ Recsum(x, x
′)

 ,

where wfrel(λx. c0+c1x, λx. c2+c3x)(x, x
′) = c0+c1x >

c0+c1x
′ ≥ 0 ∨c0+c1x ≥ c0+c1x

′∧c2+c3x > c2+c3x
′ ≥

0.

We can prove the following correctness of Elim .

Lemma 3. Suppose that (θ, σ) is a solution for Elim(∃x̃.W, Trank).
It then follows that (θ, σ↾{x̃}) is a solution for ∃x̃.W .

6.2.3 Constraint unwinding
This section explains Unwind that takes an EHCS ∃x̃.H
and an integer k ≥ 0, and returns the recursion-free EHCS
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obtained by unwinding the recursion in H k-times. Note
that, in general, H with pvs(H) = {P1, . . . , Pm} can be
expressed as follows: ⊥ ⇐ F (P1, . . . , Pm)(x̃0),

P1(x̃1) ⇐ G1(P1, . . . , Pm)(x̃1), · · · ,
Pm(x̃m) ⇐ Gm(P1, . . . , Pm)(x̃m)

 ,

where F (P1, . . . , Pm) and Gi(P1, . . . , Pm) are of the from:

λz̃.∃ỹ.
( (

P(1,1)(t̃(1,1)) ∧ · · · ∧ P(1,ℓ1)(t̃(1,ℓ1)) ∧ ϕ1

)
∨ · · · ∨(

P(n,1)(t̃(n,1)) ∧ · · · ∧ P(n,ℓ1)(t̃(n,ℓ1)) ∧ ϕn

) )
Here, P(i,j) ∈ {P1, . . . , Pm} and ∃ỹ binds all free variables
in t̃(i,j) or ϕi except x̃, z̃. Unwind(∃x̃.H, k) is defined by:

∃x̃.



⊥ ⇐ F (P
(0)
1 , . . . , P

(0)
m )(x̃0),

P
(0)
1 (x̃1) ⇐ G1(P

(1)
1 , . . . , P

(1)
m )(x̃1), · · · ,

P
(0)
m (x̃1) ⇐ Gm(P

(1)
1 , . . . , P

(1)
m )(x̃m),

...
P

(k−1)
1 (x̃1) ⇐ G1(P

(k)
1 , . . . , P

(k)
m )(x̃1), · · · ,

P
(k−1)
m (x̃1) ⇐ Gm(P

(k)
1 , . . . , P

(k)
m )(x̃m)


,

where P (0), . . . , P (k) are fresh predicate variables.

Example 4. Recall Elim(Wsum, Trank) in Example 3. We
obtain the following recursion-free EHCSs:

Unwind(Elim(Wsum, Trank), 1) = ∃c0, c1, c2, c3.
⊥ ⇐ P (0)(x, y) ∧ x > y,

wfrel(λx.c0 + c1x, λx.c2 + c3x)(x, x
′) ⇐ Rec(0)sum(x, x

′),
P (0)(x, 0) ⇐ x ≤ 0,
P (0)(x, y) ⇐ P (1)(x− 1, y − x) ∧ x > 0,

Rec(0)sum(x, x
′) ⇐ x′ = x− 1 ∧ x > 0


Unwind(Elim(Wsum, Trank), 2) =

Unwind(Elim(Wsum, Trank), 1) ∪
P (1)(x, 0) ⇐ x ≤ 0,
P (1)(x, y) ⇐ P (2)(x− 1, y − x) ∧ x > 0,

Rec(1)sum(x, x
′) ⇐ x′ = x− 1 ∧ x > 0



6.2.4 Constraint solving of rec.- and ADT-free EHCS
We use existing techniques based on Farkas’ lemma [2, 15,
42] for solving recursion- and ADT-free EHCS ∃x̃.H re-
duced from the original constraint set W . If ∃x̃.H is solv-
able, the techniques allow us to obtain a solution (θ, σ) for
∃x̃.H, from which our method constructs candidate solu-
tions for the original W (see Section 6.2.5 for details). Oth-
erwise, we obtain a counterexample for ∃x̃.H represented by
(preferably the smallest) unsolvable subset of ∃x̃.H contain-
ing just one goal clause, from which we construct a candi-
date counterexample for W (see Section 6.2.6 for details).

Example 5. Recall Unwind(Elim(Wsum, Trank), 1) in Ex-
ample 4. The constraint set is solvable, and an existing
recursion- and ADT-free EHCS solver [42] returns a solu-
tion (θ, σ) where:

θ =


P (0) 7→ λ(x, y).y ≥ x, P (1) 7→ λ(x, y).⊤,

Rec(0)sum 7→ λ(x, x′).x > x′ ≥ 0,

Rec(1)sum 7→ λ(x, x′).⊤


σ = {c0 = −1, c1 = 1, c2 = 0, c3 = 1}

Note that the candidate ranking functions σ(Trank(Recsum)) =
(λx.−1 + x, λx.x) obtained from the solution of the un-
wound constraint set already contains a useful clue for the
well-foundedness of the recursion relation Recsum in W .

6.2.5 Genuiness checking of candidate solution
This section explains how to check whether a genuine solu-
tion for W exists in a set of candidate solutions obtained
from a given solution (θ, σ) for A(W, Tsize, Trank, k). We
here reuse a previous approach based on predicate abstrac-
tion and the least fixed point computation [9].

Because a solution for W is easily obtained from a so-
lution for Elim(SAbs(W, Tsize), Trank) by using Lemmas 2
and 3, we below consider the set Θ(θ, σ) of candidate solu-
tions for Elim(SAbs(W, Tsize), Trank) defined by

{({Pi 7→
∧

Si | i = 1, . . . ,m}, σ) | ∀i.Si ⊆ preds(θ)(Pi)}

instead of that for W , where pvs(W) = {P1, . . . , Pm} and
preds(θ)(P ) represents the set

{
θP (i)

∣∣ P (i) ∈ dom(θ)
}

of
predicates associated with P by θ. Note here that the candi-
date solutions are conjunctions of predicates in preds(θ)(P ).
Our implementation reported in Section 7 is further extended
to support candidate solutions that are arbitrary Boolean
combinations of predicates: Interested readers are referred
to [13, 37].

We now explain how to check whether there is a genuine
solution for Elim(SAbs(W, Tsize), Trank) in Θ(θ, σ) without
actually constructing the whole set itself. Here we use the
least fixed point computation: starting from the least ele-
ment (θ0, σ) with θ0 = {P1 7→

∧
preds(θ)(P1), . . . , Pm 7→∧

preds(θ)(Pm)} of the finite lattice Θ(θ, σ), we iteratively
update θi with θi+1 = update(θi, σ,Elim(SAbs(W, Tsize), Trank))
until convergence (i.e., θi = θi+1 for some i), where
update(θ, σ,∃x̃.H)(P ) is defined by∧

{p ∈ preds(θ)(P ) | ∀
(
P (t̃) ⇐ b

)
∈ σH. |= p(t̃) ⇐ θ(b)}.

Intuitively, update(θ, σ, ∃x̃.H) drops conjuncts in θ(P ) that
do not satisfy a definite clause in ∃x̃.H. Because the lattice
is finite, the iterations always converge and the least solu-
tion (θi, σ) is obtained. We then check whether |= θi(σhc)
holds for all goal clauses hc ∈ Elim(SAbs(W, Tsize), Trank).
If so, (θi, σ) is a solution for Elim(SAbs(W, Tsize), Trank).
Otherwise, there is no genuine solution in the candidate set.
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Example 6. Let us consider the solution (θ, σ) in Example 5
for Unwind(Elim(Hsum, Trank), 1). We have preds(θ) =
{P 7→ {λ(x, y). y ≥ x} ,Recsum 7→ {λ(x, x′). x > x′ ≥
0}}6. We then obtain a genuine solution (preds(θ), σ) ∈
Θ(θ, σ) for Elim(Hsum, Trank) as the result of the least fixed
point computation. By Lemma 3, (preds(θ), σ↾∅) is a solu-
tion for the original constraint set Hsum.

6.2.6 Feasibility checking of candidate counterexample
This section explains how to show the unsolvability of the
original constraint set W via the feasibility checking of the
candidate counterexample for W corresponding to the given
counterexample ∃x̃.Hcex for A(W, Tsize, Trank, k). (Recall
that ∃x̃.Hcex is a unsolvable subset of A(W, Tsize, Trank, k)
containing just one goal clause.) We also discuss how to re-
fine the parameters Tsize and Trank when the candidate coun-
terexample turned out to be infeasible.

Instead of constructing the candidate counterexample
for W corresponding to ∃x̃.Hcex itself, our method con-
structs the one for Unwind(Elim(W, Trank), k), namely,
the subset ∃x̃′.H′

cex of Unwind(Elim(W, Trank), k) such
that SAbs(∃x̃′.H′

cex , Tsize) = ∃x̃.Hcex . Our implementa-
tion achieves this by tracking the correspondence between
Horn clauses before and after the reduction. We then check
whether the candidate has a solution.

• If ∃x̃′.H′
cex has a solution, it is concluded that the pa-

rameter Tsize used for size abstraction caused the impre-
cise abstraction leading to the infeasible candidate. We
therefore refine Tsize by adding a new template size func-
tion for each ADT that occur in ∃x̃′.H′

cex , and repeat the
entire process.

• Otherwise, we have two possibilities:

1. The unsolvable goal clause hc ∈ ∃x̃′.H′
cex corre-

sponds to WF (P ) ∈ W (i.e., hc = Elim(WF (P ), Trank)).
It may then be the case that hc was unsolvable be-
cause Trank was insufficient. In this case, we cannot
conclude that the candidate counterexample is feasi-
ble, and thus conservatively refine Trank by adding a
new template ranking function for P , and repeat the
entire process from Step 1.

2. The unsolvable goal clause hc ∈ ∃x̃′.H′
cex corre-

sponds to a goal clause in W . In this case, the can-
didate counterexample is feasible and our method re-
turns it as a counterexample for the original W , which
thus witnesses the untypability of the original pro-
gram.

Example 7. Recall Wcombine and T1 in Example 2. Suppose
that we obtain the counterexample ∃x̃.Hcex = {4 : ⊥ ⇐
P (0)(), 7 : P (0)()} of Unwind(SAbs(Wcombine, T1), 1). We

6 Useless predicates λx̃.⊤ are omitted here.

then obtain the candidate counterexample 4 : ⊥ ⇐ P (0)(l1, l2) ∧
(

l1 = [ ] ∧ l2 = x2 :: l′2∨
l1 = x1 :: l′1 ∧ l2 = [ ]

)
,

7 : P (0)(l, l)


for Wcombine corresponding to ∃x̃.Hcex . Because this con-
straint set has a solution, our method concludes that the in-
feasible candidate counterexample is caused by the insuffi-
ciency of Tsize.

7. Implementation and Experiments
We have implemented a fully-automated type checking and
inference tool for total correctness verification of higher-
order functional programs with ADTs written in the OCaml
language based on the proposed method. We have eval-
uated our method with widely used OCaml libraries and
tricky higher-order programs used as benchmarks in pre-
vious studies on termination verification of functional pro-
grams [3, 19, 23, 34, 35, 44]

7.1 Implementation
Our tool supports the core of the OCaml language including
ADTs and higher-order functions. The tool currently does
not support OCaml’s imperative features such as reference
cells, exceptions, and advanced features like objects.

Our tool takes as input an OCaml program and total cor-
rectness specifications expressed as refinement types, and
verifies each function whose specification is given. Our tool
does not require users to provide invariants of auxiliary func-
tions. Our tool automatically infers them that are sufficient to
verify the target functions whose specifications are provided.
When the verification succeeds, our tool reports inferred re-
finement types, ranking functions, and size functions, as a
certificate of the total correctness. Our tool is fully auto-
mated but also allows users to annotate functions with refine-
ment types, ranking functions, and size functions to aid ver-
ification. The annotations can be written using OCaml’s lan-
guage feature called “attributes” supported by OCaml 4.02
or later.

7.2 Experiments on OCaml libraries
We have used the OCaml’s List and Map modules as bench-
marks for total correctness verification. The List module
implements standard list operations and Map module im-
plements association tables using balanced trees. We used
our tool to verify that all the module interface functions
terminate and do not raise unexpected exceptions such as
Failure and Assert failure.

Table 2 summarizes the results of the experiments, which
covered 67 interface functions totaling 700 non-comment
lines of source code. Mod is the module name. LOC repre-
sents the number of non-comment lines of the source code,
and Fun indicates the number of interface functions. Size,
Inv, and Rank respectively represent the annotation number
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Mod LOC Fun Size Inv Rank Time
List 395 44 0 2 0 22.3

Map 305 23 0 0 0 39.5

Table 2. Experiment results on OCaml modules

of size functions, refinement types, and ranking functions
we needed for verification. Time denotes the total time, in
seconds, required to verify all the interface functions. The
experiments are conducted on a machine with 1.7GHz Intel
Core i7 CPU and 8GB of RAM. We next explain the experi-
ment results for each module.

7.2.1 List Module
The OCaml List module defines standard list manipulating
functions. As shown in Table 2, our tool automatically ver-
ified all the functions of the module with only two anno-
tations. In the experiments, we provided some of the func-
tions with specifications that have preconditions. For exam-
ple, consider the function nth that takes a list l and an integer
n, and returns the n+1-th element of the list l. According to
the OCaml library manual, this function raises an exception
if n is negative or n is not less than the length of l. Here, the
length of l is represented as sizelist(l)− 1 using the default
size function. We thus provided the refinement type

(l : α list) →
{
n : int

∣∣ 0 ≤ n < sizelist(l)− 1
}
→ α

as the specification of nth that has a precondition to avoid
unexpected exceptions. Our tool then successfully verified
the function by automatically inferring a ranking function
rnth(l, n) = sizelist(l)− 1 of nth, and the type

(l : α list) →
{
n : int

∣∣∣∣ 0 ≤ n < sizelist(l)− 1
∧ 2 ≤ sizelist(l)

}
→ α

of the auxiliary function nth aux. We also specified precon-
ditions for the functions hd and map2 that otherwise raise
exceptions as explained in the OCaml library manual.

For exceptions like Not found that are usually expected
and handled, instead of specifying preconditions to avoid
them, we encoded exception handlers using higher-order
functions. For example, consider the following function
find that may raise the Not found exception:

let rec find p = function

| [] -> raise Not_found

| x::l -> if p x then x else find p l

This is transformed to the one that never raises an exception:

type exc = Not_found

let rec find p l ok ex = match l with

| [] -> ex Not_found

| x::l -> if p x then ok x else find p l ok ex

Here, the function arguments ok and ex represent continua-
tions that are respectively used when some value is returned

by find and the exception Not found is raised. This encod-
ing can be automated by a selective CPS transformation [33].

The two annotations we manually provided were for aux-
iliary functions chop and sort′ of sort:

chop : (x : {x : int | ? }) →
(l :

{
l : α list

∣∣ sizelist(l)− 1 ≥ x
}
) →{

r : α list
∣∣ sizelist(r) = sizelist(l)− x

}
sort′ : (α → α → int) → (n : {n : int | n ≥ 2}) →{

l : α list
∣∣ n ≤ sizelist(l)− 1

}
→ list

Here, ? represents an unknown refinement formula which is
required to be inferred by our tool. Though these annotations
are necessary at present, our tool can benefit from future
advances in invariant synthesis techniques to further reduce
the annotation burden.

7.2.2 Map Module
The OCaml Map module implements association tables
(a.k.a. finite maps or dictionaries) using balanced trees. The
module defines the following ADT of balanced trees:

type ’a t =

Empty | Node of ’a t * key * ’a * ’a t * int

Our tool automatically generated the default size function
size(x) = case x of (Empty → 1) | (Node(t1, k, x, t2, h) →
1 + size(t1) + size(t2)) for the ADT. The functions of the
Map module assumes an invariant of the ADT that the fifth
argument of the constructor Node contains the height of the
tree. The termination verification of the interface functions
of this module required a weaker invariant that the height
contained in the fifth argument of Node is not less than 1.
Our tool allows users to specify such invariants as refinement
types of the constructors. We thus specified the invariant as
the refinement type

α t → key → α → α t → {h : int | h ≥ 1} → α t

of Node. With only this, our tool automatically verified all
the functions in the Map module. For example, consider the
following functions:

let bal l x d r = ...

let rec min_binding t = match t with

| Empty -> assert false

| Node(Empty, x, d, r, _) -> (x, d)

| Node(l, x, d, r, _) -> min_binding l

let rec remove_min_binding t = match t with

| Empty -> assert false

| Node(Empty, x, d, r, _) -> r

| Node(l, x, d, r, _) ->

bal (remove_min_binding l) x d r

let merge t1 t2 = match (t1, t2) with

| (Empty, t) -> t | (t, Empty) -> t

| (_, _) -> let (x, d) = min_binding t2 in

bal t1 x d (remove_min_binding t2)
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Function time Function time
Ackermann 7.59 churchNum 3.19
alias partial 0.27 foldr 0.49
append 0.14 indirect 0.58
binomial 0.81 indirectHO 0.50
Fibonacci 0.19 indirectIntro 0.72
loop2 0.61 map 4.59
McCarty91 0.49 quicksort 0.26
zip 0.19 toChurch 0.27
CE-0CFA 0.85 up down 5.66
CE-1CFA 5.10 x plus 2^n 0.43
CE-Jones bohr 3.44

Table 3. Experiment results on the benchmark set from [23]

The function merge merges the two argument trees, the
function min_binding returns the smallest element of the
given tree, and the function min_binding_remove removes
the smallest element from the given tree. These tree manip-
ulating functions internally calls the auxiliary function bal

for balancing trees. Our tool automatically verified the total
correctness of the function merge by inferring the ranking
functions rmin binding(t) = rremove min binding(t) = size(t)−
1 and the types of the auxiliary function with necessary pre-
conditions:

bal : α t → key → α → α t → α t

min binding : {t : α t | 3 ≤ size(t)} → key× int

remove min binding : {t : α t | 3 ≤ size(t)} → α t

7.3 Tricky recursive functions obtained from [23]
We have tested our tool with the benchmark set provided
by Kuwahara et al. [23], which consists of tricky recursive
functions obtained from previous studies on termination ver-
ification of higher-order functional programs. The results of
the experiments are summarized in Table 3. The first 8 func-
tions are first-order functions that require complex ranking
functions, and the last 13 functions are higher-order func-
tions that exhibit a complex higher-order control flow. Our
tool required a ranking function annotation only for Acker-
mann. However, for other programs, our tool verified all the
programs efficiently without any annotation.

8. Related Work
There are four major approaches to termination verification.
This section compares them with our method.

Type-based analysis Sized types [1, 3, 18] and refinement
types [43, 44] have been used to verify the termination of re-
cursive functions. They annotate types with size metrics and
check that the arguments of recursive calls are with strictly
smaller metrics. While our method is fully-automated, [1,
18, 44] are not. [43] uses heuristics to alleviate the anno-
tation burden on users but is not integrated with invariant

and ranking function synthesizers. [3] is fully-automated but
does not support higher-order functions.

Transition invariants For first-order imperative programs,
transition invariants based approach to termination verifica-
tion has been a great success [4, 5, 29]. These methods re-
duce transition invariant verification (i.e. binary reachabil-
ity analysis) into plain reachability analysis. Kuwahara et
al. has recently lifted that approach to higher-order func-
tional programs [23]. Their method can handle higher-order
functions precisely (actually their method is relatively com-
plete with respect to the soundness and completeness of the
backend reachability checker and ranking function synthe-
sizer). Their method, however, does not support ADTs and
is not efficient enough to verify real-world programs such as
OCaml library modules, due to the program transformation
they use, which puts heavy burden on the backend reacha-
bility checker.

Size-change analysis Size-change analysis [19, 24, 34–
36] for termination verification comprises two steps: first
constructs a size-change graph, and then analyzes the graph
to decide if the program is terminating by checking every in-
finite call sequence would cause an infinite descent in some
well-founded data values. The methods proposed in [19, 34,
35] can handle higher-order functions. However, these meth-
ods often fail to verify the termination of programs with a
value-dependent control flow because these methods use a
control flow analysis to statically approximate the possible
calls that the program would make and does not generate
and exploit numerical invariants unlike in our method. Like
our method, [19, 34] can prove the well-foundedness of re-
cursion relations on function closures. They, however, use a
priori order (namely, the subtree relation), while our method
can synthesize and use arbitrary linear size functions.

Term rewriting Similarly to size-change approach to ter-
mination, the approach based on term rewriting [10, 11, 16]
involves two steps: first transforms the given program into
a term rewriting system, and then applies a termination ver-
ifier for term rewriting systems to the obtained system. As
with the size-change approach, the first step statically ap-
proximates (value-dependent) control flow of the original
program, which causes the loss of analysis precision.

9. Conclusion
We have proposed a novel refinement type system for to-
tal correctness verification of higher-order functional pro-
grams with ADTs. We have also presented a fully-automated
type inference method based on invariant and ranking func-
tion synthesis techniques. The main advantage of the pro-
posed method is that it can automatically infer invariants
and ranking functions over not only integers but also higher-
order functions and algebraic data structures by synthesiz-
ing and using size functions. We have implemented a refine-
ment type checking and inference tool based on the proposed
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method, and confirmed that it can verify the total correctness
of (1) widely used OCaml libraries with a modest annotation
burden in a reasonable time and (2) small but tricky recursive
functions that require precise analysis of the higher-order
control flow and/or synthesis of complex ranking functions.
As a future work, we are planning to extend the proposed
refinement type system to verification of general liveness
properties. We are also working toward proving the relative
completeness of the proposed system with respect to an ora-
cle for validity of refinement formulas as with Hoare logics
and a relatively complete refinement type system for partial
correctness verification [42].
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