
Generating Programs for Polynomial Multiplication
with Correctness Assurance

Ryo Tokuda

Department of Computer Science

University of Tsukuba

Tsukuba, Japan

tokuda@logic.cs.tsukuba.ac.jp

Yukiyoshi Kameyama

Department of Computer Science

University of Tsukuba

Tsukuba, Japan

kameyama@acm.org

Abstract
Program-generation techniques prevail in domains that need

high performance, such as linear algebra, image processing,

and database. Yet, it is hard to generate high-performance

programs with correctness assurance, and cryptography

needs both. Masuda and Kameyama proposed a DSL-based

framework for implementing a program generator, an an-

alyzer, and a formula generator, and obtained an efficient

and correct implementation of Number-Theoretic Transform

(NTT) that is necessary for many cryptographic algorithms.

This paper advances their study in two ways. First, we de-

velop a generation-and-analysis framework so that program

generation is driven by program analysis. As a concrete re-

sult, we have found an optimization missed in previous stud-

ies. Second, we investigate whether the framework can be

applied to other algorithms, including inverse NTT. By com-

bining generated programs, we have obtained an efficient

and correct implementation of polynomial multiplication,

the key for several post-quantum cryptographic algorithms.

CCS Concepts: • Software and its engineering→ Gen-
eral programming languages; • Security and privacy→
Cryptography.

Keywords: Program Generation, Analysis, and Verification,

Number-Theoretic Transform, Post-Quantum Cryptography

ACM Reference Format:
Ryo Tokuda and Yukiyoshi Kameyama. 2023. Generating Programs

for Polynomial Multiplication with Correctness Assurance. In Pro-
ceedings of the 2023 ACM SIGPLAN International Workshop on Par-
tial Evaluation and Program Manipulation (PEPM ’23), January 16–
17, 2023, Boston, MA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3571786.3573017

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PEPM ’23, January 16–17, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0011-8/23/01. . . $15.00

https://doi.org/10.1145/3571786.3573017

1 Introduction
Post-quantum cryptography (PQC) is a central research topic

in cryptography, as the state-of-the-art cryptographic al-

gorithms such as RSA and Elliptic Curve may be compro-

mised by quantum computers. The National Institute of Stan-

dards and Technology (NIST) has been conducting the Post-

QuantumCryptography Standardization process, and among

the four candidates that advanced to the final round, three al-

gorithms are based on Ring Learning with Errors (RLWE) [1],

which is considered as one of the most promising hardness

assumptions for the post-quantum era [17]. The key ingredi-

ent of RLWE is the NTT-based multiplication of polynomials

over a certain ring [16].

For any implementations of cryptographic algorithms, ef-

ficiency and correctness are must-be-satisfied things, but

achieving both of them is non-trivial. Even though the un-

derlying algorithm written in a scientific paper is proved

correct, its implementation can be wrong, since highly ef-

ficient implementations often use low-level optimizations

that are often written in an assembly language, and are cor-

rect only for a particular set of parameters or assumptions.

Furthermore, more and more implementations are proposed

every year, which makes it unrealistic to formalize all such

implementations in proof assistants and prove their correct-

ness by humans.

This is the point where programming-generation tech-

niques may help. Masuda and Kameyama [18, 19] proposed

an embedded-DSL-based method via the tagless-final em-

bedding [9], and implemented the following three genera-

tors for the Cooley-Tukey algorithm for Number-Theoretic

Transform (NTT), which is a Fast Fourier Transform (FFT)

algorithm over the field Z𝑞 (integers modulo 𝑞):

• a program generator in the standard sense, which tar-

gets OCaml programs, C programs, or C programs

with SIMD instructions.

• an interval generator, which works as a program ana-

lyzer for integer overflows for the generated program.

They found that some reduction in the generated pro-

gram is redundant (no overflow occurs even without

the reduction), and can be eliminated, which leads to

a more optimized program.

• a formula generator where the formula expresses the

output of the generated program as a mathematical

27

https://doi.org/10.1145/3571786.3573017
https://doi.org/10.1145/3571786.3573017

PEPM ’23, January 16–17, 2023, Boston, MA, USA Ryo Tokuda and Yukiyoshi Kameyama

Figure 1. Tagless-Final Framework

formula (such as polynomial) over input variables. By

running the formula generator for the given parame-

ters and comparing the output formula with the defini-

tional formula, they successfully proved the functional

correctness of the generated program for the chosen

parameters.

The tagless-final embedding for DSL makes it easy and

handy to realize the above three (and more) generators. See

Figure 1 for an illustration.

A user (a DSL programmer) of their framework only has

to test the generated programs and rewrite the DSL program

by inspecting the results of the computation. This quick loop

allows them to find a new optimization for NTT, namely,

they found some reductions are redundant by showing that

the program without them is still free from integer overflow.

Although Masuda and Kameyama have applied the above

framework to one particular case of the Cooley-Tukey al-

gorithm for NTT, their work has raised several interesting

research questions as follows:

• Is the program generated by their method optimal in

the number of reductions?

Since their loop contains a human, it is interesting to

automate the search for correct and efficient programs.

• Does their method work only for their example pro-

gram, or is it applicable to other parameters, other

implementations, or other algorithms?

Since they applied their method for a particular algo-

rithm of NTT only, it remains to test the applicability

of their method to other algorithms, implementations,

and parameters.

• How can we assure that the program analyzers and

formula generators are correct?

They had a relatively big trusted computing base, since

the correctness of each generator was assumed in their

method. Reducing it to smaller one was left as future

work.

In this paper, we answer the first two questions and discuss

the third one.

To answer the first question, we have re-implemented

Masuda and Kameyama’s framework, which is simpler than

theirs and enables us to explore more optimization opportu-

nities. We found new optimizations in the NTT algorithm

that reduce the number of reductions by 69%. This discovery

is itself a new result for cryptography, however, we want to

be sure that this is the most optimal. Hence, we implemented

a search procedure to explore all possible combinations of

inserting/deleting the reductions to find the most efficient

one among the correct ones. Although our search procedure

uses a simple brute-force algorithm, an interesting point is

that we do not have to generate programs to analyze them,

since our analyzer is derived from the DSL program, not

from the generated program. The same holds for the formula

generator; we do not have to generate programs to verify

them. Although this is a simple observation, it has a big

advantage in reducing the cost for search.

To answer the second question, we have implemented in-

verse NTT (INTT) and polynomial multiplication, which is a

performance bottleneck of RLWE-based cryptographic algo-

rithms. Although INTT could be implemented by the same al-

gorithm as NTT, a different algorithm (the Gentleman-Sande

algorithm) is commonly used for polynomial multiplication

for efficiency reasons. We have applied the implementation

framework to the Gentleman-Sande algorithm and polyno-

mial multiplication to test the extensibility of the framework.

The result is promising; our framework enables one to au-

tomatically prove that no overflow or underflow may occur

during the execution of generated code, and that eliminating

certain reductions from the generated code is not possible,

thus it is the most optimal one in our search space. Our per-

formance measurements have shown the effects of the above

optimizations.

We also proved the functional correctness of the gener-

ated code for INTT and the overall polynomial multiplication.

The method used here is essentially the same as the one by

Masuda and Kameyama, but we had to extend the domain

for the output formula, since the output of NTT is a linear

polynomial over an input (thus we need only 𝑛 integers to

represent an element in the output where 𝑛 is the size of the

input sequence), while the output of polynomial multipli-

cation is a quadratic polynomial over two input sequences

(thus we need 𝑛2 integers to represent an element). The ex-

tension is done without a problem, and we have successfully

shown that the output formulas of polynomial multiplication

coincide with those in the defining formula of the problem.

The third question is clearly difficult to answer in a single

paper, as we need to formalize our generators themselves to

fully address it. We will discuss the issues in this paper.

The rest of this paper is organized as follows: Section 2

gives the background of this research. We explain the opti-

mization of the NTT and INTT algorithms and apply it to

polynomial multiplication in Section 3. Section 4 shows the

search process for an optimal program and provides experi-

mental results. We verify the functional correctness of our

implementation for the polynomial multiplication algorithm

28

Generating Programs for Polynomial Multiplication with Correctness Assurance PEPM ’23, January 16–17, 2023, Boston, MA, USA

in Section 5. Section 6 discusses Trusted Computing Base for

this verification. We compare our work with related work in

Section 7 and conclude in Section 8.

2 Background
2.1 Polynomial Multiplication and

Number-Theoretic Transform
The dominant computation in RLWE-based algorithms is the

multiplication of two polynomials whose coefficients are in

Z𝑞 = Z/𝑞Z where 𝑞 is a predetermined prime number called

a modulus parameter. The NewHope protocol has chosen

the modulus parameter 𝑞 = 12289 [2]. Modular arithmetic is

the system for arithmetic over Z𝑞 , and operations in modular

arithmetic are called modular operations1. As is well known,
polynomial multiplication with coefficients being Z𝑞 can be

computed in 𝑂 (𝑛 log𝑛) time by FFT, its inverse transform,

and element-wise multiplication.

NTT is a discrete Fourier transform (DFT) over a finite

field Z𝑞 . Taking 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ∈ Z𝑛𝑞 as an input, it

returns NTT𝑛 (𝑎) = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) ∈ Z𝑛𝑞 such that

𝑥𝑖 =

𝑛−1∑︁
𝑗=0

𝑎 𝑗𝜔
𝑖 𝑗
𝑛 (1)

for 𝑖 = 0, 1, . . . , 𝑛 − 1, where 𝜔𝑛 is a primitive 𝑛th root of

unity in Z𝑞 . INTT is a similar transformation to NTT and

is defined by replacing 𝜔𝑛 with a modular multiplicative

inverse of 𝜔𝑛 and multiplying the sum by the inverse of 𝑛.

Namely, (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) = INTT𝑛 (𝑥) is defined as

𝑎𝑖 = 𝑛−1
𝑛−1∑︁
𝑗=0

𝑥 𝑗𝜔
−𝑖 𝑗
𝑛 (2)

for 𝑖 = 0, 1, . . . , 𝑛 − 1.

Algorithm 1 shows the pseudocode of the Cooley-Tukey

iterative algorithm [11] for NTT. It first calls the function

bit_reverse, which reorders the input sequence 𝑎 in the bit-

reversed order, and stores the result in 𝑥 . Then, it performs

the butterfly operations in the triple loop using modular

operations. We call each iteration of the outermost loop a

stage.

2.2 Modular Reductions
Implementations in cryptographic programs are usually writ-

ten in low-level programming languages such as C or as-

sembly languages, and contain tricky low-level operations

such as modular reductions for efficiency and safety against

timing attacks [19]. The modular reductions used in NTT

implementations are Barrett reduction [6] (barrett_reduce)

and Montgomery reduction [21] (montgomery_reduce). Below

we show an implementation of these reductions in C as well

as that of csub, which can be used after the latter reduction.

1
Note that modular operations are unrelated to modules and modularity in

programming languages.

Algorithm 1 The Cooley-Tukey Algorithm for NTT

Input: 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ∈ Z𝑛𝑞
Output: (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = NTT𝑛 (𝑎)

bit_reverse(𝑎, 𝑥)
for 𝑠 = 1 to log

2
𝑛 do

𝑚 = 2
𝑠

𝑜 = 𝑛/𝑚
for 𝑘 = 0 to 𝑛 − 1 by𝑚 do
// start of the innermost loop
for 𝑗 = 0 to𝑚/2 − 1 do
𝜔 = 𝜔

𝑜 𝑗
𝑛

𝑢 = 𝑥𝑘+𝑗
𝑡 = 𝑥𝑘+𝑗+𝑚/2 · 𝜔 mod 𝑞

𝑥𝑘+𝑗 = (𝑢 + 𝑡) mod 𝑞

𝑥𝑘+𝑗+𝑚/2 = (𝑢 − 𝑡) mod 𝑞

end for
// end of the innermost loop

end for
end for

uint16_t barrett_reduce(uint16_t x) {
uint32_t u = ((uint32_t) x * 5) >> 16;
return x - (uint16_t) (u * q);

}

uint16_t montgomery_reduce(uint32_t x) {
uint32_t u = ((x & ((1 << 18) - 1))

* qinv) & ((1 << 18) - 1);
return (uint16_t) ((x + u * q) >> 18);

}

uint16_t csub(uint16_t x) {
int16_t v = (int16_t) x - q;
return v + ((v >> 15) & q);

}

The above implementations are rather tricky, and we can

hardly understand their meaning without reading the expla-

nation below.

The function barrett_reduce takes a 16-bit integer as an

input, and returns a 14-bit integer congruent to the input

modulo 𝑞. The strange constant 5 is used based on the fact

that the chosen parameter 𝑞 satisfies 5𝑞 < 65536 = 2
16
.

The function montgomery_reduce takes a 32-bit integer as

an input, and returns it multiplied by a modular multiplica-

tive inverse of 2
18
. The actual output of the function is a

14-bit integer that is congruent to it modulo 𝑞. The con-

stant qinv is 12287 that satisfies the equation 𝑞·qinv≡ −1
mod 2

16
.

The function csub performs conditional subtraction, which

returns the difference of the input and 𝑞 if it is greater than

or equal to 𝑞, and returns the input otherwise.

It is now apparent that the correctness of the above im-

plementations is far from obvious. It holds under certain

29

PEPM ’23, January 16–17, 2023, Boston, MA, USA Ryo Tokuda and Yukiyoshi Kameyama

conditions on inputs and outputs, and depends on a particu-

lar choice of the parameter 𝑞 (and possibly 𝑛). Verification

of these implementations is strongly desired.

2.3 Embedded DSL in Tagless-Final Style
The tagless-final style [9] is a way to embed a DSL into a

metalanguage. One of its features is that it separates inter-

faces and interpretations for DSL terms. We use the pro-

gramming language OCaml as a metalanguage and its mod-

ule system to realize the style. In OCaml, a signature and

a module correspond to an interface and an interpretation,

respectively. Types and functions that will be defined in mod-

ules are declared in signatures. DSL terms are described in a

functor that takes a module of a given signature and returns

another module. We can present multiple interpretations for

one DSL term by applying a functor to different modules.

Masuda and Kameyama [18, 19] introduced a framework

for computing NTT in the tagless-final style embedded DSL

(eDSL). Their framework can generate not only highly ef-

ficient C code with SIMD instructions, but also intervals

for program analysis, and formulas for program verification.

Their DSL has two components: language abstraction and

domain abstraction.

Language abstraction defines the typed syntax of DSL in

an abstract way. The following signature Lang provides an

interface consisting of types 'a expr (expressions of type 'a)

and stmt (statements), and functions as language primitives

such as %+ for addition of array indices and get for retrieving

the value of an array element.

module type Lang = sig
type 'a expr
type stmt
val (%+) : int expr ->

int expr -> int expr
val get : 'a array expr ->

int expr -> 'a expr
val set : ...
val for_ : ...
...

end

Domain abstraction expresses the domain and operations

for data values. The following signature Domain includes an

abstract type t which is the type of data values, and add for

(abstract) addition of two data values.

module type Domain = sig
type 'a expr
type t
val lift : int -> t expr
val add : t expr ->

t expr -> t expr
val sub : ...
val mul : ...
...

end

Program 1. DSL Program for Algorithm 1

for_ zero (m_half %- one) one (fun j ->
let omega =

D.lift (roots.(unlift (o %* j))) in
let idxkj = k %+ j in
let2

(get x idxkj)
(D.mul (get x (idxkj %+ m_half)) omega)
(fun u t ->

seq
(set x idxkj (D.add u t))
(set x (idxkj %+ m_half) (D.sub u t)
))))))

Our eDSL is specified by these two signatures. We can

instantiate our eDSL in several different ways by combining

the interpretations for Lang and for Domain. The separation

of signatures is advantageous when we reuse interpretations.

For example, one can fix an interpretation for Lang while

changing one for Domain to obtain a different instantiation

of our eDSL.

Program 1 is a DSL-program for the innermost loop of Al-

gorithm 1. In this program, roots.(unlift (o %* j)) corre-

sponds to 𝜔
𝑜 𝑗
𝑛 , and let2 e1 e2 (fun u t -> s) corresponds

to the expression let u = e1 in let t = e2 in s. Here we

assume that the domain abstraction is interpreted by the

module D, hence, a domain operation add is referred to as

D.add.

The DSL specified by the two signatures are abstract in

the sense that we can (and must) give an interpretation for

them to actually run the program. The important merit of

the tagless-final embedding is that we can give an arbitrary

interpretation as long as it conforms to the interface.

For instance, to run the program in the metalanguage

(OCaml in our case), we interpret (or instantiate) Lang by

Run, and Domain by IntModulo, respectively, as follows:

module Run : Lang = struct
type 'a expr = unit -> 'a
type stmt = unit -> unit
let (%+) x y () = x () + y ()
let get a i () = Array.get (a ()) (i ())
let set a i x () =

Array.set (a ()) (i ()) (x ())
let for_ low high step body () = ...
...

end

module IntModulo : Domain = struct
type 'a expr = 'a Run.expr
type t = int
let lift x () = x
let add x y () = (x () + y ()) mod q
let sub x y () = (x () - y ()) mod q
let mul x y () = ...
...

end

30

Generating Programs for Polynomial Multiplication with Correctness Assurance PEPM ’23, January 16–17, 2023, Boston, MA, USA

These interpretations are rather straightforward except that

we need to use thunks such as x () to manage the evaluation

order.

To interpret our DSL as a C-code generator, we interpret

Lang by Gen, and Domain by Code, respectively, as follows:

module Gen : Lang = struct
type 'a expr = string
type stmt = string
let (%+) x y = ...
let get a i = a ^ "[" ^ i ^ "]"
let set a i x =

a ^ "[" ^ i ^ "]␣=␣" ^ x ^ ";\n"
let for_ low high step body = ...
...

end

module Code : Domain = struct
type 'a expr = 'a Gen.expr
type t = string
let lift x = string_of_int x
let add x y = x ^ "␣+␣" ^ y
let sub x y = x ^ "␣-␣" ^ y
let mul x y = ...
...

end

We use strings to represent C programs. We could have

used MetaOCaml as well, then well-typed OCaml programs

are generated.

By giving a different interpretation for the two signatures,

we can instantiate an abstract NTT program to a different

interpretation. For instance, by replacing the code generator

with a more involved one, low-level code including Barrett

reduction and Montgomery reduction can be generated. We

shall instantiate the NTT program with various interpre-

tations to generate not only code, but also intervals as the

result of program analysis, and mathematical formulas to be

verified. The details will be explained in later sections.

3 Analysis-Driven Optimization
Highly efficient implementations of cryptographic algorithms

in the previous section rely on rather tricky low-level code,

hence automatic program analysis and verification are strongly

desired. Masuda and Kameyama proposed an eDSL tech-

nique to develop program analyzers and formula generators

for program verification. The program analyzer works as

a discriminator of good programs from bad ones, and they

discovered a new optimization in their target program by

running analyzers for several program variants.

In this work, we have performed the analysis-driven opti-

mization on several programs including the Cooley-Tukey al-

gorithm for NTT, the Gentleman-Sande algorithm for INTT,

and multiplication over polynomials. Interestingly, we found

that Masuda and Kameyama’s implementation can be opti-

mized further.

This section describes how we do the analysis-driven op-

timization for NTT and INTT, and in the next section, we

show how the procedure of proving the optimality of our

implementations can be systematized.

3.1 Interval Analyzer
We have implemented an interval analyzer as an interpreta-

tion of eDSL. The module IntModuloInterval shown below

implements our abstract domain.

module IntModuloInterval : Domain = struct
type 'a expr = 'a Run.expr
type t = int * int
let lift x () = (x,x)
let add x y () =

let (x1,x2) = x () in
let (y1,y2) = y () in
assert

(0 <= x1 && x1 <= x2 && x2 <= 65535);
assert

(0 <= y1 && y1 <= y2 && y2 <= 65535);
let (l,h) = (x1 + y1, x2 + y2) in
assert

(0 <= l && l <= h && h <= 65535);
(l,h)

let sub x y () = ...
let mul x y () = ...
...

end

The abstract type t represents the underlying domain,

which is int in the standard interpretation, but is the product

type int * int in the above interpretation. The intuition

behind this choice is that an element of this type is the pair

of a lower bound and an upper bound. Then, the addition

operation takes two such pairs as inputs, and returns the

pair whose lower (upper, resp.) bound is the addition of the

inputs’ lower (upper, resp.) bounds. The assertions assert

... in the above module check whether these bounds are

valid 16-bit unsigned integers. In addition to them, we can

declare the intervals of the input and the output of each

operation which works as pre- and post-conditions for it.

Table 1 shows such conditions for each operation.

Our interval analysis is a very simple case of abstract

interpretation [12], which abstracts the program execution

and performs the static analysis. Interestingly, the state-of-

the-art static analyzer, Frama-C, is not capable of computing

sufficiently precise bounds for our purpose, and thus cannot

prove that some optimized programs do not cause overflow.

This is due to the use of bit-level primitives (bit-shift and

bit-mask) in arithmetic operations.

Masuda and Kameyama solved the problem with a hy-

brid approach; for each arithmetic operation used in NTT,

one can select either a standard interval analysis, or an ex-

haustive computation, that is, it computes the outputs for all

possible inputs and takes the minimum and maximum for

the outputs, producing the most precise bounds. We have

31

PEPM ’23, January 16–17, 2023, Boston, MA, USA Ryo Tokuda and Yukiyoshi Kameyama

Table 1. Pre- and Post-Conditions as Constraints on Intervals

Operation Precondition Postcondition

(𝑙, ℎ) = add (𝑥1, 𝑥2) (𝑦1, 𝑦2) 0 ≤ 𝑥1 ≤ 𝑥2 ≤ 65535 ∧ 0 ≤ 𝑦1 ≤ 𝑦2 ≤ 65535 0 ≤ 𝑙 ≤ ℎ ≤ 65535

(𝑙, ℎ) = sub (𝑥1, 𝑥2) (𝑦1, 𝑦2) 0 ≤ 𝑥1 ≤ 𝑥2 ≤ 65535 ∧ 0 ≤ 𝑦1 ≤ 𝑦2 ≤ 65535 0 ≤ 𝑙 ≤ ℎ ≤ 65535

(𝑙, ℎ) = mul (𝑥1, 𝑥2) (𝑦1, 𝑦2) 0 ≤ 𝑥1 ≤ 𝑥2 ≤ 65535 ∧ 0 ≤ 𝑦1 ≤ 𝑦2 ≤ 16383 0 ≤ 𝑙 ≤ ℎ ≤ 16383

followed them and used the hybrid approach for our version

of NTT, INTT, and polynomial multiplication. Although the

exhaustive computation is computationally heavy in general,

it is needed only for unary arithmetic operations that have

only 2
16
values as inputs, and our hybrid analyzer worked

without problems.

3.2 Optimizing the Cooley-Tukey Algorithm
We first investigate the Cooley-Tukey algorithm for NTT

as in Masuda and Kameyama [19]. Algorithm 2 shows the

pseudocode of the innermost loop of Algorithm 1. It involves

low-level code such as Barrett and Montgomery reductions.

Algorithm 2 The Innermost Loop of the NTT Algorithm

for 𝑗 = 0 to𝑚/2 − 1 do
𝜔 = 2

18𝜔
𝑜 𝑗
𝑛 mod 𝑞

𝑢 = 𝑥𝑘+𝑗
𝑡 = montgomery_reduce(𝑥𝑘+𝑗+𝑚/2 · 𝜔)
if 𝑠 mod 2 == 0 then
𝑥𝑘+𝑗 = barrett_reduce(𝑢 + 𝑡)

else
𝑥𝑘+𝑗 = 𝑢 + 𝑡

end if
𝑥𝑘+𝑗+𝑚/2 = barrett_reduce(𝑢 + 2𝑞 − 𝑡)

end for

The pseudocode is the same as the Cooley-Tukey algo-

rithm for Z𝑞 elements except that it encodes Z𝑞 elements as

16-bit unsigned integers, which makes it necessary to avoid

integer overflow and underflow.

For instance, the second last line of the program contains

an expression 𝑢 + 2𝑞 − 𝑡 , whose rationale is that we need to

add a multiple of 𝑞 to avoid underflow when computing𝑢−𝑡 .
Barrett reduction also plays an important role to avoid over-

flow. It returns a 14-bit unsigned integer which is congruent

to its input (a 16-bit unsigned integer) modulo 𝑞.

We have thoroughly investigatedMasuda andKameyama’s

analysis and found that we can eliminate Barrett reductions
2

in Algorithm 2. We have come up with a way to decrease the

number of Barrett reductions and performed interval anal-

ysis to prove the absence of overflow and underflow. Our

way is justified as follows: As a result of our analysis, apply-

ing the function csub after Montgomery reduction makes

2
After this elimination, the values may not be smaller than 𝑞, and holding

such values in the computation would be called lazy reductions in the

literature.

the value of 𝑡 less than 𝑞. This implies that we can replace

the subtraction 𝑢 + 2𝑞 − 𝑡 by 𝑢 + 𝑞 − 𝑡 without the risk of

underflow. Our analysis also shows maximum return value

of the function barrett_reduce is 16379. By the equation

16379 + 4𝑞 = 65535 = 2
16 − 1, we can add four values from

[0, 𝑞] to 𝑢 without a 16-bit overflow where 𝑢 is its return

value. The intervals of the values 𝑡 and 𝑞 − 𝑡 are [0, 𝑞 − 1]
and [1, 𝑞], respectively. Thus, Barrett reductions need to be

applied only once in four stages after the calculations 𝑢 + 𝑡

and 𝑢 + 𝑞 − 𝑡 . Given this fact, we have refined Algorithm 2

to Algorithm 3 shown below.

Algorithm 3 The Improved Innermost Loop of the NTT

Algorithm

for 𝑗 = 0 to𝑚/2 − 1 do
𝜔 = 2

18𝜔
𝑜 𝑗
𝑛 mod 𝑞

𝑢 = 𝑥𝑘+𝑗
𝑡 = csub(montgomery_reduce(𝑥𝑘+𝑗+𝑚/2 · 𝜔))
if 𝑠 mod 4 == 0 then
𝑥𝑘+𝑗 = barrett_reduce(𝑢 + 𝑡)
𝑥𝑘+𝑗+𝑚/2 = barrett_reduce(𝑢 + 𝑞 − 𝑡)

else
𝑥𝑘+𝑗 = 𝑢 + 𝑡

𝑥𝑘+𝑗+𝑚/2 = 𝑢 + 𝑞 − 𝑡

end if
end for

Our improvement shows a drastic reduction in the total

number of Barrett reductions in the NTT program. For the

case of 𝑛 = 1024, our program applies them 4 × 512 times

(2×512 times after the addition𝑢+𝑡 and 2×512 times after the

subtraction 𝑢 +𝑞 − 𝑡) while the previous one applies 15× 512

times (5 × 512 times after the addition 𝑢 + 𝑡 and 10 × 512

times after the subtraction 𝑢 + 2𝑞 − 𝑡). It means that we have

removed 11 × 512 Barrett reductions. Instead, our program

applies the function csub 10×512 times. Accordingly, we need

to check the impact on the execution speed for eliminating

Barrett reductions and inserting csubs. We will show it in

practice in the next section.

As the next target, we have applied the technique to the

Gentleman-Sande algorithm [20] for INTT, which signifi-

cantly differs from the Cooley-Tukey algorithm. Since our

interval analyzer works for any programs written in our

DSL, we only have to run it for the target program without

having to rewrite it. The result shows that the original im-

plementation [2], which allows us to use 32-bit unsigned

32

Generating Programs for Polynomial Multiplication with Correctness Assurance PEPM ’23, January 16–17, 2023, Boston, MA, USA

integers, does not cause overflow, but we cannot improve it.

As Algorithm 4 shows, we need to apply Barrett reductions

once in two stages after 𝑢 + 𝑡 .

Algorithm 4 The INTT Algorithm

Input: 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) ∈ Z𝑛𝑞
Output: (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) = INTT𝑛 (𝑥)

for 𝑠 = log
2
𝑛 to 2 by −1 do

𝑚 = 2
𝑠

𝑜 = 𝑛/𝑚
for 𝑘 = 0 to 𝑛 − 1 by𝑚 do

for 𝑗 = 0 to𝑚/2 − 1 do
𝜔 = 2

18𝜔
−𝑜 𝑗
𝑛 mod 𝑞

𝑢 = 𝑥𝑘+𝑗
𝑡 = 𝑥𝑘+𝑗+𝑚/2
if (log

2
𝑛 − 𝑠) mod 2 == 1 then

𝑥𝑘+𝑗 = barrett_reduce(𝑢 + 𝑡)
else
𝑥𝑘+𝑗 = 𝑢 + 𝑡

end if
𝑥𝑘+𝑗+𝑚/2 = montgomery_reduce((𝑢 + 3𝑞 − 𝑡) · 𝜔)

end for
end for

end for
for 𝑘 = 0 to 𝑛 − 1 by 2 do
𝜔 = 2

18/𝑛
𝑢 = 𝑥𝑘
𝑡 = 𝑥𝑘+1
𝑥𝑘 = montgomery_reduce((𝑢 + 𝑡) · 𝜔)
𝑥𝑘+1 = montgomery_reduce((𝑢 + 3𝑞 − 𝑡) · 𝜔)

end for
bit_reverse(𝑥, 𝑎)

3.3 Improving Vectorized Implementation
The strength of Masuda and Kameyama’s work is to generate

a rather efficient vectorized implementation for NTT in the

C language with SIMD instructions. We have analyzed the

vectorized versions of NTT and INTT, and found a new

optimization that reduces the number of Barrett reductions

in their work.

The challenge for vectorized implementation is that all

data must be stored in vector registers of the same size, which

are 16-bit integers for our case. Then, the multiplication of

two 16-bit integers is problematic, and we have to use a dif-

ferent low-level implementation for multiplication. Masuda

and Kameyama [19] proposed an implementation that works

under this constraint, and used their framework for the new

low-level implementation to generate an efficient vectorized

program.

We have analyzed their implementation and optimized it

further. While Barrett reductions must be applied once in

three stages in their implementation, they need to be applied

once in four stages in ours to avoid overflow and under-

flow. We also analyzed the vectorized INTT program (the

Gentleman-Sande algorithm) to find a similar optimization,

where Barrett reductions need to be applied twice in three

stages. We will later explain more details about the above

issues.

3.4 Polynomial Multiplication with NTT and INTT
Finally, we have investigated polynomial multiplication with

NTT and INTT. RLWE-based cryptographic algorithms typi-

cally need the multiplication of polynomials over the ring

Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ [16] where the polynomial 𝑥𝑛 + 1 is carefully
chosen to keep the degree of polynomials within 𝑛 and to

allow efficient computation.

It is well known that multiplication over degree-𝑛 poly-

nomials can be computed in 𝑂 (𝑛 log𝑛) time using NTT and

INTT, and Pöppelmann et al. [23] proposed an efficient way

to compute the multiplication of two elements in the ring

Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ using certain variants of NTT and INTT. See

Algorithms 5 and 6 in Appendix A for these variants.

We can compute multiplication over Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ using
these algorithms. Given two polynomials 𝑓 (𝑥) = ∑𝑛−1

𝑖=0 𝑎𝑖𝑥
𝑖

and 𝑔(𝑥) =
∑𝑛−1

𝑖=0 𝑏𝑖𝑥
𝑖
, their product 𝑓 (𝑥)𝑔(𝑥) =

∑𝑛−1
𝑖=0 𝑐𝑖𝑥

𝑖

in Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ is computed as

(𝑐0, . . . , 𝑐𝑛−1) =
INTT

∗
𝑛 (EWM(NTT∗

𝑛 (𝑎0, . . . , 𝑎𝑛−1),NTT∗
𝑛 (𝑏0, . . . , 𝑏𝑛−1)))

(3)

where NTT
∗
𝑛 and INTT

∗
𝑛 denote Algorithm 5 and Algorithm

6, respectively, and EWM performs the element-wise multi-

plication.

For the variants of NTT and INTT, we have applied the

same method as above to obtain optimized implementations.

By running the program analyzer against the variants with-

out having to change implementations, we have confirmed

that there is no danger of overflow and underflow for the

optimized programs, as we have derived by our brain.

In the next section, we will show the results of our per-

formance measurement to show the actual speedup of the

improvements.

4 Searching for an Optimal Program
In Section 3, we have investigated the implementation of the

Cooley-Tukey algorithm for NTT and found a new optimiza-

tion opportunity that was overlooked by previous works

including Masuda and Kameyama. It remains to be seen if

more optimizations are possible.

In this section, we automate the process to search for an

optimal program for NTT. For this particular case, we can

reason about the algorithm directly and conclude that we

cannot eliminate the reduction further. However, since we

want to change the implementation and algorithms repeat-

edly to achieve better performance, human intervention in

33

PEPM ’23, January 16–17, 2023, Boston, MA, USA Ryo Tokuda and Yukiyoshi Kameyama

this process should be as small as possible. We are then nat-

urally led to implementing a search procedure which finds

the correct and efficient program.

4.1 Search Procedure
Our search program does a simple brute-force search for

correct programs. The following listing shows that we search

for the program where i, j, and k specify the stages in which

the reduction should be performed.

module M = Algorithm(Run)(IntModuloInterval)

let ntt3 () =
for i = 1 to logn - 2 do

for j = i + 1 to logn - 1 do
for k = j + 1 to logn do

try
...
let _ =

M.ntt_stages [i;j;k] ... in
print_endline

(sprintf "[%d,%d,%d]:␣OK" i j k)
with Assert_failure(_) ->

print_endline
(sprintf "[%d,%d,%d]:␣NG" i j k)

done
done

done

The module IntModuloInterval is a program analyzer,

which fails during the execution if it cannot guarantee no

overflow for the generated program for the given i, j, and

k. Similarly, we searched for non-overflow programs that

omit Barrett reductions at fewer number of stages than ntt3.

The result was negative, namely, our generated program is

the most optimal in the number of Barrett reductions on our

search space.

Note that we do not have to call the (standard) program

generator, which means that we analyze a generated pro-

gram without having the program itself! This observation

is probably too simple to state in a research paper for pro-

gramming languages, however, it would surprise outsiders

including experts in cryptography, who actually write an

implementation in our eDSL. Program-generation technique

indeed helps cryptography.

4.2 Performance Measurements
We conducted performance measurements to find the effect

of our optimizations. To do so, we generated C programs

for NTT, INTT, and polynomial multiplication in our frame-

work, which are then compiled and executed. The computing

environment for our experiment was macOS 12.5.1, Apple

M1, 16GB memory, OCaml 4.14.0, and Clang 15.0.5.

Table 2 shows the results for the non-vectorized imple-

mentations, where NTT and INTT are the algorithms of their

Table 2. The execution time of non-vectorized implementa-

tions (sec.)

Algorithm Implementation 𝑛 = 512 𝑛 = 1024

NTT (A) Previous work 0.1429 0.2818

(B) This work 0.1305 0.2439

INTT (C) Previous work 0.1068 0.1931

Polynomial (A) & (C) 0.3318 0.7219

multiplication (B) & (C) 0.3068 0.6375

Table 3. The number of Barrett reductions in vectorized

implementations

Algorithm Implementation 𝑛 = 512 𝑛 = 1024

NTT (D) Previous work 12 × 256 13 × 512

(E) This work 4 × 256 4 × 512

INTT (F) Previous work 8 × 256 9 × 512

(G) This work 5 × 256 6 × 512

Polynomial (D) & (F) 32 × 256 35 × 512

multiplication (E) & (G) 13 × 256 14 × 512

variants, and are the components of polynomial multiplica-

tion. The figures are the average execution time for 10 trials

of 10,000 runs.

Table 2 suggests that our improvement on eliminating

Barrett reductions leads to significant speed-up for these

algorithms. More precisely, our improvement makes poly-

nomial multiplication approximately 8-13% faster than the

previous work. This indicates that the cost of Barrett reduc-

tions is high in these algorithms and that the positive effect

of eliminating Barrett reductions is greater than the negative

effect of inserting csubs.

Table 3 shows the results for vectorized implementations.

It shows the numbers of Barrett reductions since measuring

the actual execution time with vector instructions (SIMD

instructions) needs special care for fair comparison.

Table 3 shows that our optimization significantly reduces

the number of Barrett reductions. The reduction is approx-

imately 66-69% for NTT, 33-38% for INTT, and 59-60% for

polynomial multiplication.

We expect that our optimization improves the execution

time in the vectorized computing environment, but its mea-

surement is left for future work.

5 Verifying Functional Correctness
Functional correctness of an algorithm or a program means

that it satisfies the input-output relation with respect to

a given specification. This section shows how we ensure

the functional correctness of generated code for polynomial

multiplication in the previous section.

34

Generating Programs for Polynomial Multiplication with Correctness Assurance PEPM ’23, January 16–17, 2023, Boston, MA, USA

5.1 Masuda and Kameyama’s Verification for NTT
Masuda and Kameyama [19] proved the functional correct-

ness of their implementation of the Cooley-Tukey algorithm

with respect to the definitional formula of NTT. It is highly

non-trivial, as the program generated by their method con-

tains low-level optimized code for arithmetic operations, as

well as high-level optimizations such as lazy reduction or

so-called bit-reversal. Moreover, since such implementations

are rapidly updated by new optimizations, the verification

procedure should be fully or largely automated without re-

quiring human intervention.

Masuda and Kameyama [19] solved this problem by the

following observations:

• It is rather difficult to verify the generated program

as a whole, which would force us to reason about

high-level mathematical properties and low-level im-

plementation details simultaneously. In fact, applying

the state-of-the-art SMT solver to the generated pro-

gram did not work. One needs a way to decompose

the generated program into a high-level part and low-

level parts, but it is exactly what the eDSL approach

provides.

• In cryptography, generated programs are, inmost cases,

straight-line code, namely, they contain no loops, con-

ditionals, or function calls. Thus, one can express the

output value as an expression over input values as

variables. In fact, the output values in the NTT algo-

rithm are expressible as linear functions over input

variables if we ignore low-level details. Then prov-

ing functional correctness for the high-level part boils

down to coefficient-wise checking of a linear function

between the output of the generated program and the

definitional formula.

• The low-level part such as Barrett reduction consists of

a small but complicated code which contains bit-level

operations. Luckily, the state-of-the-art SMT solver

has the bit-vector theory, that can verify the func-

tional correctness of low-level functions completely

automatically.

Based on these observations, they have verified a low-level

generated program and high-level generated code separately,

which was successful.

5.2 Verification for Polynomial Multiplication
Our goal is to prove that the output of the polynomial multi-

plication program using the improved implementations for

NTT and INTT is equivalent to the definition of the multipli-

cation of two polynomials over Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩. Given two

polynomials 𝑓 (𝑥) =
∑𝑛−1

𝑖=0 𝑎𝑖𝑥
𝑖
and 𝑔(𝑥) =

∑𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖
, the

coefficients of the product 𝑓 (𝑥)𝑔(𝑥) = ∑𝑛−1
𝑖=0 𝑐𝑖𝑥

𝑖
are defined

by

𝑐𝑖 ≡
𝑖∑︁
𝑗=0

𝑎𝑖𝑏𝑖− 𝑗 −
𝑛−1∑︁
𝑗=𝑖+1

𝑎 𝑗𝑏𝑛+𝑖− 𝑗 mod 𝑞 (4)

for 𝑖 = 0, 1, . . . , 𝑛 − 1. (Note that we compute polynomials

modulo 𝑥𝑛 + 1, which means 𝑥𝑛 and −1 are congruent.)
First, we verified the functional correctness of the low-

level operations Barrett reduction, Montgomery reduction,

and csub. Unlike Masuda and Kameyama’s work, the veri-

fication task was accomplished by a brute-force approach,

namely, we computed the results of applying each operation

to all possible inputs, and checked if the results satisfy the

specification. This exhaustive check was successful, which

confirmed the functional correctness of all three operations.

Note that verification by the SMT solver took a long time,

while our brute-force method ran very efficiently.

For the functional correctness of the higher-level part,

we implemented a formula generator as an interpretation

of the abstract domain following Masuda and Kameyama,

but one extension was needed. Our formula generator must

deal with quadratic functions over inputs, while the output

of their target (an NTT algorithm) can be expressed as a

linear function over inputs. By inspecting our algorithm,

it turned out that we only need either a constant, a linear

function over inputs, or a homogeneous quadratic function

over two inputs. Hence, we instantiate the abstract type in

our Formula module as follows:

module Formula : Domain = struct
...
type t =

| Const of int
| Linear of int array
| Quad of int array array

...
end

For instance, the expressions Const(357), Linear([3;5;7]),

and Quad([[3;0;0];[0;5;0];[0;0;7]]) have type Formula.t,

and they represent the constant 357, the linear polynomial

3𝑎0 + 5𝑎1 + 7𝑎2, and the quadratic polynomial 3𝑎0𝑏0 + 5𝑎1𝑏1 +
7𝑎2𝑏2, respectively.

We then implemented each arithmetic operation over this

type. (Note that the functional correctness of low-level oper-

ations has been already proved, we can safely regard each

arithmetic operation as a mathematical modular operation.)

For instance, the operation add is instantiated as follows:

let add x y () =
match (x (), y ()) with
| (x,Const(c)) when c mod q = 0 -> x
| (Linear(a),Linear(b)) ->

Linear(Array.init n (fun i ->
(a.(i) + b.(i)) mod q))

| (Quad(a),Quad(b)) ->
Quad(Array.init n (fun i ->

35

PEPM ’23, January 16–17, 2023, Boston, MA, USA Ryo Tokuda and Yukiyoshi Kameyama

Array.init n (fun j ->
(a.(i).(j) + b.(i).(j)) mod q)))

...
| _ -> failwith "unexpected␣expression"

It is a naïve implementation for multiplication over formu-

las. The important property here is that the results of the

computation of add never go beyond the type Formula.t.

Finally, we combined the above implementation into an

interpretation of Domain as follows:

module Formula : Domain = struct
type 'a expr = 'a Run.expr
type t =

| Const of int
| Linear of int array
| Quad of int array array

let add x y () = ...
let sub x y () = ...
let mul x y () = ...
...

end

We ran the formula generator for our polynomial mul-

tiplication algorithm under the standard interpretation for

language primitives such as for_, which results in𝑛 quadratic

polynomials that represent each component of the output.

As an example, the following formula has been obtained as

the 100th output for 𝑛 = 1024:

1 a[0]b[100] + 1 a[1]b[99] + 1 a[2]b[98]
+ 1 a[3]b[97] + 1 a[4]b[96] + 1 a[5]b[95]
+ ...
+ 12288 a[1020]b[104] + 12288 a[1021]b[103]
+ 12288 a[1022]b[102] + 12288 a[1023]b[101]

Producing the above formula has taken approximately 379

seconds in our computing environment described in Section

4.2.

Note that 12288 is equal to −1 modulo 𝑞 = 12289. We

have compared each output formula with the definitional

formula, and confirmed that they are point-wise equivalent

for𝑛 = 512 and𝑛 = 1024. This result subsumes the functional

correctness of our implementation of polynomial multiplica-

tion over Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ for the above 𝑛 and 𝑞 = 12289.

6 Discussion on Trusted Computing Base
Our verification in the previous section relies on several

assumptions which we trust without proofs, namely, we

have a relatively big trusted computing base (TCB).

Besides the correctness of the implementation languages

(including OCaml and C for our case) and the hardware, the

biggest component of our TCB is that all interpretations of

the eDSL semantically agree. In this section, we discuss how

one can reduce the TCB.

6.1 Tagless-Final Embedding
The tagless-final embedding of a DSL is a fairy convenient

way to express an embedded DSL using an abstraction mech-

anism in programming languages, such as module in OCaml,

trait in Scala, and type class in Haskell.

A program in the DSL is expressed by abstraction, and

is given various interpretations such as execution, printing,

code generation, and even more. The DSL itself gives no

semantics, thus we can write any interpretation as long as

it respects typings. For instance, a DSL expression a %+ b

in our eDSL can be interpreted as addition in the standard

semantics, but it can be subtraction, multiplication, or any

kinds of binary operations in the non-standard semantics.

This flexibility of tagless-final embedding is useful but

sometimes problematic. In order for our analysis and veri-

fication to make sense, we assumed, without a proof, that

generated intervals and formulas in our interpretations cor-

rectly respect the *standard* semantics of DSL. Clearly, we

need a way to constrain interpretations so that they certainly

agree with the standard semantics. This is what we call the

coherence problem (for interpretations).

6.2 Modular Approach
The key to solve the coherence problem (at least partially) is,

again, the modularity induced by the tagless final embedding.

In its basic form, all interpretations must be compositional,

so proving the equivalence of each component of an interpre-

tation with the same component of the standard semantics

would imply the coherence property of the interpretation.

Then, we only have to consider each primitive or operation

separately, and we pick up a few cases as follows:

• Addition is interpreted by the interval generator in

such a way that t adds the lower bounds (or upper

bounds) of its operands, and returns the pair. This

would be trivially justified by the standard semantics.

Addition is interpreted by the formula generator as

coefficient-wise addition over polynomials. Again, it

is easy to justify it.

• Multiplication is more interesting, since it is realized by

primitive multiplication and Montgomery reduction,

which is a highly non-trivial implementation. If its

implementation used in the interval analyzer and in

the code generator is implemented independently, the

result of interval analysis has nothing to do with the

generated code.

We solve this problem by providing an implementation

of Montgomery reduction as a tagless-final translation

so that all interpreters use the same translation as an

implementation. In OCaml, a tagless-final translation

is realized as a functor, a function over modules, and

similarly realized in other languages. For instance, we

can define the functor AddMontgomery to add a specific

36

Generating Programs for Polynomial Multiplication with Correctness Assurance PEPM ’23, January 16–17, 2023, Boston, MA, USA

implementation of Montgomery reduction in a low-

level domain LLDomain.

module AddMontgomery
: functor (D:LLDomain) -> Domain

Then, the semantic coherence is guaranteed provided

all interpretations use AddMontgomery, regardless of its

actual implementation.

• Extensibility.

We may need to add a low-level operation to generate

efficient code. Masuda and Kameyama introduced the

operations mullo and mulhi for vectorized implemen-

tations, which multiply two 16-bit integers and return

the lower or upper 16 bits as the results.

If we have to implement the interval analysis for these

operations separately from the code generator, the

coherence property might be lost. Instead, we imple-

ment mullo in terms of existing operations such as

32-bit multiplication and the modulo operation, which

will be inefficient, but is sufficient for the purpose of

analysis and verification. Then, an implementation of

the interval analysis for them is automatically derived

from that for existing operations.

To prove the coherence for mullo, we only have to

prove that the implementation of mullo respects its

implementation, which is usually easier than proving

the correctness of a custom-made interval analyzer.

We have so far discussed about operations over domains

only. Language primitives such as for_ need some care, as

their semantics is not necessarily compositional. However,

our DSL has a very limited set of standard primitives. There-

fore, it would not be difficult to formally reason about the

correctness of each interpretation, but it is left for future

work.

7 Related Work
There are a number of related work that aims to give highly

efficient and correct implementations for cryptographic al-

gorithms. In this section, we pick up those closely related to

ours.

Navas et al. [22] presented how to show the absence of 32-

bit overflows on NTT. They used the SeaHorn verification

framework [14] and the Crab abstract interpretation library

to prove it. This method is implemented as a C program spe-

cialized for one NTT program. Compared with their study,

our framework is more general in that ours can analyze any

kinds of programs that are expressible in our DSL, including

implementations of NTT, INTT, and polynomial multipli-

cation, without having to implement an analyzer for each

target.

Hwang et al. [15] proposed a general verification method

to ensure the correctness of highly-efficient implementations

of NTT-based polynomial multiplication algorithms. Notably,

their method targets real assembly code with SIMD instruc-

tions, thus their Trusted Computing Base is much smaller

than ours. They successfully verified the implementations

proposed by three finalists in the PQC Standardization. One

drawback of their approach is that a user has to insert many

assertions such as “the value of register X is the same as that

of Y” into the target code in order for their verification tool

CryptoLine to automatically certify the target. This means

that a user of their method must understand the details of

internal cryptographic algorithms, that is a big burden for

many users. Moreover, it will be hard to maintain the assur-

ance if the implementation changes quickly. Similarly to our

work, they decomposed a verification problem into several

pieces using the cut rule3. While they have to think about

how to decompose a big assembly code, our decomposition

is derived by the eDSL and its interpretations. In summary,

their method gives the highest level of reliability, ours gives

an easy-to-verify method so that one can implement, analyze

and verify quickly and repeatedly.

Erbsen et al. [13] introduced a way to implement low-level

cryptographic primitives that uses the Coq proof assistant

to verify the functional correctness of their implementation.

Similarly, the framework Jasmin [3] also used this assistant

to develop high-speed and high-assurance cryptographic

software. In addition, the library HACL
∗
[27], written in the

F
∗
programming language, verifies the implementations of

cryptographic primitives. Since the cost of verification with

Coq or F
∗
is high, our framework is more suitable for rapid

prototyping, such as NTT.

Amin and Rompf [4] advocated the usefulness of gen-

erative programming in not only program generation but

also verification. Their work can generate C code and ACSL

specifications together, and then the code is verified using

the specifications. They successfully verified memory safety,

overflow safety, and functional correctness. Although their

work and ours are similar in methodology, the target pro-

grams are quite different. We are mainly interested in highly

efficient implementations used in cryptography where low-

level tricky operations play an important role.

Studies on the acceleration of NTT implementations on

Field-Programmable Gate Arrays (FPGA) have been actively

done [10, 24–26]. They realize low-latency NTT implementa-

tions by various hardware-level optimizations, which brings

a new challenge of verification. We hope to apply our eDSL-

based approach to hardware generation, however, it is left

for future work.

The PQC Standardization process is already in its final

stage. CRYSTALS-Kyber [5] is a finalist in the PQC Standard-

ization [1], which gives efficient implementations for NTT,

INTT, and polynomial multiplications for a different set of

security parameters (𝑛 = 256 and 𝑞 = 3329). The acceleration

of NTT and polynomial multiplication by Kyber is an active

3
The cut rule in CryptoLine is similar to the cut rule in sequence calculus.

37

PEPM ’23, January 16–17, 2023, Boston, MA, USA Ryo Tokuda and Yukiyoshi Kameyama

research topic [7, 8]. We believe that our method can be used

for analyzing and verifying Kyber.

8 Conclusion
We have presented an eDSL-based framework which realizes

low-level implementations for NTT, INTT, and polynomial

multiplication. The systematic framework enables one to

automatically generate code, analyze it, and obtain a rep-

resentation of the output as a mathematical formula that

can be verified outside of our framework. The result of our

interval analysis gave a new optimization to reduce the num-

ber of reductions, and the search procedure for the optimal

program in our search space, without having to generate a

huge number of programs. We have verified the end-to-end,

functional correctness of our implementation for polynomial

multiplication. Altogether, we have shown how DSL-based

program-generation technology contributes to generating a

highly efficient implementation of cryptographic algorithms

with correctness assurance.

We think that the key to this success came from the mod-

ular and extensible nature of the tagless-final embedding. In

fact, we invented nothing new in programming-language

technology. Rather, we found a new application of existing

technology.

As future work, we hope to apply the technique exploited

in this paper to more implementations for different algo-

rithms. The most notable applications are the finalists in

the PQC Standardization, such as Kyber. Other important

future work is to generate and certify assembly programs

and FPGAs for cryptography.

Acknowledgments
We would like to thank Masahiro Masuda and the mem-

bers of the Programming Logic Group for their helpful com-

ments. Thanks also go to the anonymous reviewers for their

careful reading and constructive criticism. The authors are

supported in part by JSPS Grant-in-Aid (B) 22H03563.

A The NTT and INTT Algorithms for
Polynomial Multiplication

Algorithms 5 and 6 show the pseudocode of variants of NTT

and INTT, which are used for polynomial multiplication.

These are based on the Cooley-Tukey algorithm and the

Gentleman-Sande algorithm, respectively, but they do not

execute bit reversal. They use components of Ψ and Ψ∗
as a

factor 𝜔 instead of the powers of the primitive 𝑛th root 𝜔𝑛 .

The arrays Ψ and Ψ∗
contain powers of a square root𝜓 of𝜔𝑛

in bit-reversed order and those of a modular multiplicative

inverse of𝜓 in bit-reversed order, respectively.

Algorithm 5 A Variant of the NTT Algorithm

Input: 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ∈ Z𝑛𝑞
for 𝑠 = 1 to log

2
𝑛 do

𝑚 = 2
𝑠

𝑜 = 𝑛/𝑚
for 𝑘 = 0 to𝑚/2 − 1 do

𝑗1 = 2 · 𝑘 · 𝑜
𝑗2 = 𝑗1 + 𝑜 − 1

𝜔 = Ψ𝑚/2+𝑘
for 𝑗 = 𝑗1 to 𝑗2 do
𝑢 = 𝑎 𝑗
𝑡 = 𝑎 𝑗+𝑜 · 𝜔 mod 𝑞

𝑎 𝑗 = (𝑢 + 𝑡) mod 𝑞

𝑎 𝑗+𝑜 = (𝑢 − 𝑡) mod 𝑞

end for
end for

end for

Algorithm 6 A Variant of the INTT Algorithm

Input: 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) ∈ Z𝑛𝑞
for 𝑠 = log

2
𝑛 to 2 by −1 do

𝑚 = 2
𝑠

𝑜 = 𝑛/𝑚
for 𝑘 = 0 to𝑚/2 − 1 do

𝑗1 = 2 · 𝑘 · 𝑜
𝑗2 = 𝑗1 + 𝑜 − 1

𝜔 = Ψ∗
𝑚/2+𝑘

for 𝑗 = 𝑗1 to 𝑗2 do
𝑢 = 𝑥 𝑗
𝑡 = 𝑥 𝑗+𝑜
𝑥 𝑗 = (𝑢 + 𝑡) mod 𝑞

𝑥 𝑗+𝑜 = (𝑢 − 𝑡) · 𝜔 mod 𝑞

end for
end for

end for
𝜔 = 𝑛−1 · Ψ∗

1
mod 𝑞

for 𝑗 = 0 to 𝑛/2 − 1 do
𝑢 = 𝑥 𝑗
𝑡 = 𝑥 𝑗+𝑛/2
𝑥 𝑗 = (𝑢 + 𝑡) · 𝑛−1

mod 𝑞

𝑥 𝑗+𝑛/2 = (𝑢 − 𝑡) · 𝜔 mod 𝑞

end for

References
[1] Gorjan Alagic, David Cooper, Quynh Dang, Thinh Dang, John M.

Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl A. Miller, Dustin Moody,

Rene Peralta, Ray Perlner, Angela Robinson, Daniel Smith-Tone, and

Daniel Apon. 2022. Status Report on the Third Round of the NIST

Post-Quantum Cryptography Standardization Process. https://doi.
org/10.6028/NIST.IR.8413

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.

2016. Post-quantum Key Exchange - A New Hope. In 25th USENIX

38

https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413

Generating Programs for Polynomial Multiplication with Correctness Assurance PEPM ’23, January 16–17, 2023, Boston, MA, USA

Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Associa-

tion, 327–343. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,

Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-

Assurance and High-Speed Cryptography. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM, 1807–1823. https://doi.org/10.1145/3133956.3134078
[4] Nada Amin and Tiark Rompf. 2017. LMS-Verify: abstraction without

regret for verified systems programming. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and
Andrew D. Gordon (Eds.). ACM, 859–873. https://doi.org/10.1145/
3009837.3009867

[5] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,

Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,

and Damien Stehlé. 2021. CRYSTALS-Kyber Algorithm Specifications

And Supporting Documentation (version 3.02). https://pq-crystals.
org/kyber/data/kyber-specification-round3-20210804.pdf

[6] Paul Barrett. 1986. Implementing the Rivest Shamir and Adleman Pub-

lic Key Encryption Algorithm on a Standard Digital Signal Processor.

In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings (Lecture Notes in Computer Science, Vol. 263), An-
drew M. Odlyzko (Ed.). Springer, 311–323. https://doi.org/10.1007/3-
540-47721-7_24

[7] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang,

and Shang-Yi Yang. 2022. Neon NTT: Faster Dilithium, Kyber, and

Saber on Cortex-A72 and Apple M1. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2022, 1 (2022), 221–244. https://doi.org/10.46586/tches.
v2022.i1.221-244

[8] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari

Kermani. 2021. High-Speed NTT-based Polynomial Multiplication

Accelerator for CRYSTALS-Kyber Post-Quantum Cryptography. IACR
Cryptol. ePrint Arch. (2021), 563. https://eprint.iacr.org/2021/563

[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

tagless, partially evaluated: Tagless staged interpreters for simpler

typed languages. J. Funct. Program. 19, 5 (2009), 509–543. https:
//doi.org/10.1017/S0956796809007205

[10] Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Su-

joy Sinha Roy, Ray C. C. Cheung, Derek Chi-Wai Pao, and Ingrid

Verbauwhede. 2015. High-Speed Polynomial Multiplication Architec-

ture for Ring-LWE and SHE Cryptosystems. IEEE Trans. Circuits Syst.
I Regul. Pap. 62-I, 1 (2015), 157–166. https://doi.org/10.1109/TCSI.2014.
2350431

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. 2009. Introduction to Algorithms, 3rd Edition. MIT Press. http:
//mitpress.mit.edu/books/introduction-algorithms

[12] Patrick Cousot and Radhia Cousot. 2010. A gentle introduction to

formal verification of computer systems by abstract interpretation. In

Logics and Languages for Reliability and Security, Javier Esparza, Bernd
Spanfelner, and Orna Grumberg (Eds.). NATO Science for Peace and

Security Series - D: Information and Communication Security, Vol. 25.

IOS Press, 1–29. https://doi.org/10.3233/978-1-60750-100-8-1
[13] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam

Chlipala. 2020. Simple High-Level Code For Cryptographic Arithmetic:

With Proofs, Without Compromises. ACM SIGOPS Oper. Syst. Rev. 54,
1 (2020), 23–30. https://doi.org/10.1145/3421473.3421477

[14] Arie Gurfinkel, Temesghen Kahsai, and Jorge A. Navas. 2015. SeaHorn:

A Framework for Verifying C Programs (Competition Contribution). In

Tools and Algorithms for the Construction and Analysis of Systems - 21st

International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science,
Vol. 9035), Christel Baier and Cesare Tinelli (Eds.). Springer, 447–450.

https://doi.org/10.1007/978-3-662-46681-0_41
[15] Vincent Hwang, Jiaxiang Liu, Gregor Seiler, Xiaomu Shi, Ming-Hsien

Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2022. Verified NTT Multipli-

cations for NISTPQC KEM Lattice Finalists: Kyber, SABER, and NTRU.

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 4 (2022), 718–750.

https://doi.org/10.46586/tches.v2022.i4.718-750
[16] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number

Theoretic Transform for Faster Ideal Lattice-Based Cryptography. In

Cryptology and Network Security - 15th International Conference, CANS
2016, Milan, Italy, November 14-16, 2016, Proceedings (Lecture Notes
in Computer Science, Vol. 10052), Sara Foresti and Giuseppe Persiano

(Eds.). 124–139. https://doi.org/10.1007/978-3-319-48965-0_8
[17] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. On Ideal

Lattices and Learning with Errors over Rings. J. ACM 60, 6 (2013),

43:1–43:35. https://doi.org/10.1145/2535925
[18] Masahiro Masuda and Yukiyoshi Kameyama. 2021. FFT Program Gen-

eration for Ring LWE-Based Cryptography. In Advances in Information
and Computer Security - 16th InternationalWorkshop on Security, IWSEC
2021, Virtual Event, September 8-10, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12835), Toru Nakanishi and Ryo Nojima (Eds.).

Springer, 151–171. https://doi.org/10.1007/978-3-030-85987-9_9
[19] Masahiro Masuda and Yukiyoshi Kameyama. 2022. Unified Program

Generation and Verification: ACase Study onNumber-Theoretic Trans-

form. In Functional and Logic Programming - 16th International Sympo-
sium, FLOPS 2022, Kyoto, Japan, May 10-12, 2022, Proceedings (Lecture
Notes in Computer Science, Vol. 13215), Michael Hanus and Atsushi

Igarashi (Eds.). Springer, 133–151. https://doi.org/10.1007/978-3-030-
99461-7_8

[20] Kevin Millar, Marcin Lukowiak, and Stanislaw P. Radziszowski. 2019.

Design of a Flexible Schönhage-Strassen FFT Polynomial Multiplier

with High- Level Synthesis to Accelerate HE in the Cloud. In 2019
International Conference on ReConFigurable Computing and FPGAs,
ReConFig 2019, Cancun, Mexico, December 9-11, 2019, David Andrews,

René Cumplido, Claudia Feregrino, and Marco Platzner (Eds.). IEEE,

1–5. https://doi.org/10.1109/ReConFig48160.2019.8994790
[21] Peter L. Montgomery. 1985. Modular Multiplication With-

out Trial Division. Math. Comp. 44 (1985), 519–521.

https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-
1985-0777282-X/S0025-5718-1985-0777282-X.pdf

[22] Jorge A. Navas, Bruno Dutertre, and Ian A. Mason. 2020. Verification

of an Optimized NTT Algorithm. In Software Verification - 12th Inter-
national Conference, VSTTE 2020, and 13th International Workshop, NSV
2020, Los Angeles, CA, USA, July 20-21, 2020, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 12549), Maria Christakis, Nadia

Polikarpova, Parasara Sridhar Duggirala, and Peter Schrammel (Eds.).

Springer, 144–160. https://doi.org/10.1007/978-3-030-63618-0_9
[23] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-

Performance Ideal Lattice-Based Cryptography on 8-Bit ATxmega

Microcontrollers. In Progress in Cryptology - LATINCRYPT 2015 - 4th
International Conference on Cryptology and Information Security in
Latin America, Guadalajara, Mexico, August 23-26, 2015, Proceedings
(Lecture Notes in Computer Science, Vol. 9230), Kristin E. Lauter and

Francisco Rodríguez-Henríquez (Eds.). Springer, 346–365. https://doi.
org/10.1007/978-3-319-22174-8_19

[24] Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K.

Prasanna. 2022. NTTGen: a framework for generating low latency

NTT implementations on FPGA. In CF ’22: 19th ACM International
Conference on Computing Frontiers, Turin, Italy, May 17 - 22, 2022, Luca
Sterpone, Andrea Bartolini, and Anastasiia Butko (Eds.). ACM, 30–39.

https://doi.org/10.1145/3528416.3530225

39

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3009837.3009867
https://doi.org/10.1145/3009837.3009867
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.46586/tches.v2022.i1.221-244
https://eprint.iacr.org/2021/563
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1109/TCSI.2014.2350431
https://doi.org/10.1109/TCSI.2014.2350431
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.3233/978-1-60750-100-8-1
https://doi.org/10.1145/3421473.3421477
https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.46586/tches.v2022.i4.718-750
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1145/2535925
https://doi.org/10.1007/978-3-030-85987-9_9
https://doi.org/10.1007/978-3-030-99461-7_8
https://doi.org/10.1007/978-3-030-99461-7_8
https://doi.org/10.1109/ReConFig48160.2019.8994790
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://doi.org/10.1007/978-3-030-63618-0_9
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1145/3528416.3530225

PEPM ’23, January 16–17, 2023, Boston, MA, USA Ryo Tokuda and Yukiyoshi Kameyama

[25] Tian Ye, Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and

Viktor K. Prasanna. 2021. FPGA Acceleration of Number Theoretic

Transform. In High Performance Computing - 36th International Con-
ference, ISC High Performance 2021, Virtual Event, June 24 - July 2, 2021,
Proceedings (Lecture Notes in Computer Science, Vol. 12728), Bradford L.

Chamberlain, Ana Lucia Varbanescu, Hatem Ltaief, and Piotr Luszczek

(Eds.). Springer, 98–117. https://doi.org/10.1007/978-3-030-78713-4_6
[26] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and

Leibo Liu. 2020. Highly Efficient Architecture of NewHope-NIST

on FPGA using Low-Complexity NTT/INTT. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2 (2020), 49–72. https://doi.org/10.13154/

tches.v2020.i2.49-72
[27] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan

Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified

Modern Cryptographic Library. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM, 1789–1806. https://doi.org/10.1145/3133956.3134043

Received 2022-10-18; accepted 2022-11-15

40

https://doi.org/10.1007/978-3-030-78713-4_6
https://doi.org/10.13154/tches.v2020.i2.49-72
https://doi.org/10.13154/tches.v2020.i2.49-72
https://doi.org/10.1145/3133956.3134043

	Abstract
	1 Introduction
	2 Background
	2.1 Polynomial Multiplication and Number-Theoretic Transform
	2.2 Modular Reductions
	2.3 Embedded DSL in Tagless-Final Style

	3 Analysis-Driven Optimization
	3.1 Interval Analyzer
	3.2 Optimizing the Cooley-Tukey Algorithm
	3.3 Improving Vectorized Implementation
	3.4 Polynomial Multiplication with NTT and INTT

	4 Searching for an Optimal Program
	4.1 Search Procedure
	4.2 Performance Measurements

	5 Verifying Functional Correctness
	5.1 Masuda and Kameyama's Verification for NTT
	5.2 Verification for Polynomial Multiplication

	6 Discussion on Trusted Computing Base
	6.1 Tagless-Final Embedding
	6.2 Modular Approach

	7 Related Work
	8 Conclusion
	Acknowledgments
	A The NTT and INTT Algorithms for Polynomial Multiplication
	References

