
4. Limitation of RCaml and our solution
class List {

Int length() { return assert false; }
}
class Nil extends List {

Int length() { return 0; }
}
class Cons extends List {

Int hd; List tl;
Cons(Int hd, List tl) { this.hd=hd; this.tl=tl; }
Int length() {

return 1 + this.tl.length();
}

}
class Main {

List mk_n_list(Int n) {
return if n=0 then new Nil()

else new Cons(n, this.mk_n_list(n-1));
}

}
main() {

return assert (new Main().mk_n_list(3).length() = 3);
}

Precise and fully-automated verification of Java programs

Verification of Featherweight Java Programs via
Transformation to Higher-order Functional Programs

with Recursive Data Types

FJ to ML translator

Existing ML program verifier

ML program
with recursive data structures and

higher-order functions

Extended FJ program

Result
Valid
Invalid
Unknown

Our verifier

type obj = Obj of (int -> obj-> obj) * (obj -> bool)

let length_Main this = assert false
let mk_n_list_Main n this = ...
let send_mk_n_list (Obj (m1,m2)) = m1 (Obj(m1,m2))

...

let main () =
assert (send_length

send_mk_n_list_Main
(Obj(mk_n_list_Main 3, length_Main)) = 3)

To simulate dynamic dispatch, extract and call a function
from the recursive data structure that encodes an object

Encode objects as recursive data structures

Simulate dynamic dispatch using higher-
order functions and recursive data types

FJ program

ML program

Hiroki Sakamoto Hiroshi Unno (University of Tsukuba)

RCaml cannot handle recursive data structures context-sensitively
if they contain functions (otherwise, it can)

Limitation

Solution
Extend the FJ-to-ML translation to insert context information to
the recursive data structures that encode objects

We use Refinement Caml (RCaml) [Unno et al. ’09…]
because it can perform path-sensitive analysis of
conditional branches

Behaves differently depending on the context of length

Behaves differently depending on the run time value of n

(Conjecture)

𝐹𝐽 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ↛𝐹𝐽
∗ 𝑎𝑠𝑠𝑒𝑟𝑡 𝑓𝑎𝑙𝑠𝑒 ⟺

𝑀𝐿 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ↛𝑀𝐿
∗ 𝑎𝑠𝑠𝑒𝑟𝑡 𝑓𝑎𝑙𝑠𝑒

type obj = Obj of cls * (int -> obj-> obj) * cls * (obj -> bool)

and cls = Mk_n_list_Main of int | Length_Cons | ...

let send_mk_n_list (Obj (cm1,m1,cm2,m2)) = m2 (Obj(cm1,m1,cm2,m2))

...

let main () =

assert (send_length

send_mk_n_list_Main

(Obj(Mk_n_list_Main(3),mk_n_list_Main 3,

Length_Main, length_Main)) = 3)

This poster :
Proposes a precise and semi-automated verification
method for assertion safety of programs in
Featherweight Java (FJ) [Igarashi et al. ‘01]
extended with booleans, integers,
conditional branches, and assertions

Example 1

Example 2

1. Our ultimate goal

2. Approach

3. Translation from FJ to ML

5. Experiments (with demonstrations)

class List { Int contain() { return assert false; } }

class Nil extends List { Int contain() { return false; } }

class Cons extends List {

Int hd; List tl;

Cons(Int hd, List tl) { this.hd=hd; this.tl=tl;}

Int contain(Int n) {

return if key = hd then true else this.tl.contain(key);

}

}

main() {

return assert (new Cons(1, new Cons(2, new Nil()))).contain(2);

}

Result: Safe (+ refinement types as certificate)

Achieved path- and context-sensitive
verification with small annotation burden

Result: Safe (+ refinement types as certificate)

Achieved fully-automated context-sensitive verification

Annotation for recursive data types+

2. Challenges

Assertion safety verification for ext. FJ often requires
・Context-sensitive analysis of dynamic dispatch
・Path-sensitive analysis of conditional branches

(This translation is inspired by [Kobayashi and Igarashi ’13])

FJ program 𝑃𝑙𝑖𝑠𝑡

FJ program 𝑃𝑙𝑖𝑠𝑡

𝑃𝑙𝑖𝑠𝑡

6. Future work
・Improve RCaml (improve performance, etc.)
・Improve the translation (deal with other features such as

multithreaded programs, assignment, exceptions, etc.)

