A Fixpoint Logic and Dependent Effects for Temporal Property Verification

Yoji Nanjo1, Hiroshi Unno1, Eric Koskinen2, Tachio Terauchi3

1 University of Tsukuba 2 Stevens Institute of Technology 3 Waseda University
Temporal Property Verification

Program P ? Temporal property Φ

Check whether P satisfies Φ
This Work

Higher-order functional program

Value-dependent temporal property

Check whether P satisfies Φ by using
(1) a dependent refinement type & effect system and
(2) a deductive system for a first-order fixpoint logic
Main Contribution

• Foundation for **compositional & algorithmic** verification of **value-dependent temporal** properties of higher-order programs
 • cf. previous proposals are:
 • fully automated but whole program analysis [Kobayashi+ PLDI’11], [U.+ POPL’13], [Kuwahara+ ESOP’14], [Kuwahara+ CAV’15], [Murase+ POPL’16]
 • compositional but no support of the class of properties [Koskinen+ CSL-LICS’14], [U.+ POPL’18]
This Work

Higher-order functional program

Value-dependent temporal property

\[P \models \Phi \]

Check whether P satisfies Φ by using
(1) a dependent refinement type & effect system and
(2) a deductive system for a first-order fixpoint logic
Example: Functional Program

```
let rec send_msgs n =
  if n = 0 then ()
  else (event[Send]; send_msgs (n-1))
```

Generated event sequences:
- $n < 0 : \text{Send}^\omega$ (infinite repetition of \textit{Send})
- $n = 0 : \epsilon$ (empty sequence)
- $n = 1 : \text{Send}$
- $n = 2 : \text{Send}, \text{Send}$
 \[\vdots\]
This Work

Higher-order functional program

\[P \models \Phi \]

Value-dependent temporal property

Check whether \(P \) satisfies \(\Phi \) by using

1. a dependent refinement type & effect system and
2. a deductive system for a first-order fixpoint logic
This Work

\[P \models (\Phi_\mu, \Phi_\nu) \]

Check whether \textit{finite} event sequences generated by \(P \) satisfy \(\Phi_\mu \) and \textit{infinite} event sequences generated by \(P \) satisfy \(\Phi_\nu \).
Example: Value-Dependent Temporal Property

let rec send_msgs n =
 if n = 0 then
 ()
 else
 (event[Send]; send_msgs (n-1))

For terminating executions

\[\Phi^\mu \equiv \lambda x \in \Sigma^*. x = \text{Send}^n \]

For diverging executions

\[\Phi^\nu \equiv \lambda x \in \Sigma^{\omega}. x = \text{Send}^\omega \]

For diverging executions

\[\Phi^\mu \equiv \lambda x \in \Sigma^*. x = \text{Send}^n \]

n-times repetition of Send

\[\Phi^\nu \equiv \lambda x \in \Sigma^{\omega}. x = \text{Send}^\omega \]

infinite repetition of Send

\[n < 0 : \text{Send}^\omega \]
\[n = 0 : \epsilon \]
\[n = 1 : \text{Send} \]
\[n = 2 : \text{Send, Send} \]
\[\vdots \]
Further Examples

- See the paper for further examples that demonstrate the range of applications

<table>
<thead>
<tr>
<th>Amortized Complexity</th>
<th>Higher-Order</th>
<th>Web Server Fairness</th>
</tr>
</thead>
<tbody>
<tr>
<td>let rev l =</td>
<td>let rec zoom () =</td>
<td></td>
</tr>
<tr>
<td>let rec aux l acc = match l with</td>
<td>event[Zoom]; zoom ()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[] -> acc</td>
<td>h::t -></td>
</tr>
<tr>
<td></td>
<td></td>
<td>event[Tick]; aux t (h::acc)</td>
</tr>
<tr>
<td></td>
<td>in aux l []</td>
<td></td>
</tr>
<tr>
<td>let is_empty (l1,l2) = l1 = [] && l2 = []</td>
<td>let rec shrink t f d =</td>
<td></td>
</tr>
<tr>
<td>let enqueue e (l1,l2) = event[Enq];(l1,e::l2)</td>
<td>if f () <= 0 then</td>
<td></td>
</tr>
<tr>
<td>let rec dequeue (l1,l2) = match l1 with</td>
<td>zoom ()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[] -> dequeue (rev l2, [])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e::l1' -> event[Deq]; (e, (l1', l2))</td>
<td></td>
</tr>
<tr>
<td>let rec main (l1,l2) =</td>
<td>else</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if * then main (enqueue 42 (l1,l2))</td>
<td>(event[Shrink];</td>
</tr>
<tr>
<td></td>
<td>else if is_empty (l1,l2) then ()</td>
<td>let t' = f() - d in</td>
</tr>
<tr>
<td></td>
<td>else main (snd (dequeue (l1,l2)))</td>
<td>shrink t' (fun x -> t') d)</td>
</tr>
<tr>
<td>main : ((l1,l2) : int list × int list) → (unit & Φ)</td>
<td>let shrinker t d =</td>
<td></td>
</tr>
<tr>
<td>Φ̃ = λx.λEnq(x) +</td>
<td>l1</td>
<td>shrinker t (fun x -> t) d</td>
</tr>
<tr>
<td>l2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φ̃ = λx.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t : {t \mid t ≥ 0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d : {d \mid d > 0 \land t mod d = 0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unit & Φ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φ̃ = λx.⊥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φ̃ = λx.x ∈ Shrink^{t/d} . Zoom^{0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>server : (npool : {\nu \mid \nu ≥ 0}) → (unit & (λx.⊥, λx.φ))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ = \left(x ∈ (Σ^* \setminus \text{Accept})^{npool+1}_ω \right)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Rightarrow x ∈ (Σ^* \cdot \text{Wait})^{ω}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Check whether P satisfies Φ via

(1) a dependent refinement type & effect system and

(2) a deductive system for a first-order fixpoint logic
Contributions

1. A dependent refinement type & effect system for compositional & algorithmic temporal verification
 • Compositional analysis of dependent temporal effects represented by predicates of first-order fixpoint logic \mathcal{L}
 • Algorithmic type checking via validity checking for \mathcal{L}

2. A deductive system for the validity of \mathcal{L}
 • Use invariants and well-founded relations to over- and under-approximate fixpoints
 • Designed by transferring ideas from verification research
 • Can be used with any background first-order theory
 • Enable other applications to program verification, which will be presented at the HCVS workshop on 13th 2018/7/11
Contributions

1. A dependent refinement type & effect system for \textit{compositional} & \textit{algorithmic} temporal verification
 - \textbf{Compositional} analysis of dependent temporal effects represented by predicates of \textit{first-order fixpoint logic} \mathcal{L}
 - \textbf{Algorithmic} type checking via validity checking for \mathcal{L}

2. A deductive system for the validity of \mathcal{L}
 - Use \textit{invariants} and \textit{well-founded relations} to over- and under-approximate fixpoints
 - Designed by transferring ideas from verification research
 - Can be used with \textit{any} background \textit{first-order theory}
 - Enable other applications to program verification, which will be presented at the HCVS workshop on 13th
First-Order Fixpoint Logic \mathcal{L}

- First-order logic extended with least fixpoints (LFPs) and greatest fixpoints (GFPs)

We here fix the theory as the one above for *temporal effect analysis*, though we could choose any background first-order theory.
Temporal Effect Analysis

Let rec send_msgs n =
if n = 0 then ()
else (event[Send]; send_msgs (n-1))

Example:
The use of first-order fixpoint logic allows precise representation (cf. previous work only allowed \((\omega-)\)regular expressions [Skalka+'08, Hofmann+'14] or did not specify the effect language [Koskinen+'14])

\[\Phi_e^\mu \equiv \lambda x \in \Sigma^*. (\mu X_\mu (n, x)). \]
\[\Phi_e^\nu \equiv \lambda x \in \Sigma^\omega. (\nu X_\nu (n, x)). n \neq 0 \land (\exists y. x = \text{Send} \cdot y \land X_\mu(n-1, y)) \]
Dependent Refinement Type & Effect System

Key typing rules:

\[
\begin{align*}
\Gamma \vdash e_1 : (\tau_1 & \& \Phi_1) & \quad \Gamma, x : \tau_1 \vdash e_2 : (\tau_2 & \& \Phi_2) \\
\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : (\tau_2 & \& \Phi_1 \cdot \Phi_2)
\end{align*}
\]

Sequential composition of effects

\[
\Phi_1 \cdot \Phi_2 = (\lambda x \in \Sigma^*. \exists x_1, x_2 \in \Sigma^*. x = x_1 \cdot x_2 \land \Phi_1(x_1) \land \Phi_2(x_2), \lambda x \in \Sigma^*. \Phi_1(x) \lor (\exists y \in \Sigma^*, z \in \Sigma^*. x = y \cdot z \land \Phi_1(y) \land \Phi_2(z)))
\]

Fixpoints describing a dependent temporal effect of a recursive function

\[
\begin{align*}
\Gamma \vdash \text{rec}(f, \tilde{x}, e) : (\tau_f & \& \Phi_{\text{val}})
\end{align*}
\]

Check sub-effect relation via fixpoint logic deduction

Theorem 1 (Soundness): \(\Gamma \vdash e : (\tau & (\Phi^\mu, \Phi^\nu))\) implies \(e \in [\Gamma \vdash \tau & (\Phi^\mu, \Phi^\nu)]\)

(e behaves as specified by \((\tau & (\Phi^\mu, \Phi^\nu))\) under a valuation conforming to \(\Gamma\))

Extends existing refinement type systems [Koskinen+'14, Rondon+'08, U.+'09, Terauchi'10, …]

• Types & effects facilitate compositional analysis of dependent temporal effects
• Fixpoint logic deduction enables algorithmic type checking
Contributions

1. A dependent refinement type & effect system for compositional & algorithmic temporal verification
 • Compositional analysis of dependent temporal effects represented by predicates of first-order fixpoint logic \mathcal{L}
 • Algorithmic type checking via validity checking for \mathcal{L}

2. A deductive system for the validity of \mathcal{L}
 • Use invariants and well-founded relations to over- and under-approximate fixpoints
 • Designed by transferring ideas from verification research
 • Can be used with any background first-order theory
 • Enable other applications to program verification, which will be presented at the HCVS workshop on 13th

2018/7/11 LICS'18, Oxford, UK 17
First-Order Fixpoint Logic \mathcal{L} (revisited)

• First-order logic extended with least fixpoints (LFPs) and greatest fixpoints (GFPs)

(formulas) $\phi ::= \top \mid \bot \mid A(\tilde{t}) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \forall x \in S. \phi \mid \exists x \in S. \phi \mid X(\tilde{t}) \mid (\mu X(\tilde{x}: \tilde{S}). \phi)(\tilde{t}) \mid (\nu X(\tilde{x}: \tilde{S}). \phi)(\tilde{t})$

(terms) $t ::= x \mid f(\tilde{t})$

predicate symbols of the background theory

sorts (e.g. \mathbb{Z}) of the background theory

LFPs (X occurs only positively in ϕ)

GFPs (X occurs only positively in ϕ)

function symbols of the background theory

predicate variables
Deductive System $\vdash \phi$ for the Validity of \mathcal{L}

1. Over- and under-approximate fixpoint subformulas of ϕ by non-fixpoint formulas
 - For soundness, subformulas that occur positively and negatively are respectively under- and over-approximated

2. Resulting non-fixpoint formulas are discharged by a solver for the background first-order theory

- Techniques for obtaining approximations:

<table>
<thead>
<tr>
<th>Over-Approximation</th>
<th>Under-Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFP</td>
<td>Invariant (induction)</td>
</tr>
<tr>
<td>GFP</td>
<td>Well-founded relation</td>
</tr>
<tr>
<td></td>
<td>Invariant (co-induction)</td>
</tr>
</tbody>
</table>

Analogous to techniques in safety and liveness property verification
Example: Fixpoint Deduction via Over-Approx. of LFP

Check that p is a pre-fixpoint of F (or, equivalently, perform induction by unfolding LFP and applying I.H. to the recursive occurrences of X)

Deduction in background first-order theory

Over-approx. of LFP by pre-fixpoint

\[\lambda x \in \Sigma^*. x = \text{Send}^n \]

where $F(X)(n, x) = \left(\begin{array}{l}
 n = 0 \land x = \epsilon \\
 n \neq 0 \land (\exists y. x = \text{Send} \cdot y \land X(n - 1, y))
\end{array} \right) \]
Example: Fixpoint Deduction via Over-Approx. of GFP

Check that the given well-founded relation p_2 witnesses that the given predicate p_1 and Φ_e^n have no intersection (see the paper for details).

Deduction in background first-order theory

Over-approx. of GFP by negation of p_1
Theorem 2 (Soundness of \vdash): $\vdash \phi$ implies $\models \phi$

\[\models \psi \vdash \phi \quad \text{FP-VALID} \]
\[\vdash [(\lambda \bar{x}.\psi')/X] \psi \Rightarrow \psi' \quad \vdash C^-\left[\dfrac{\bar{t}/\bar{x}}{\psi'}\right] \]
\[\vdash C^-\left[(\mu X(\bar{x}).\psi)(\bar{t})\right] \]

\[\models \psi' \Rightarrow [(\lambda \bar{x}.\psi')/X] \psi \quad \vdash C^+\left[\dfrac{\bar{t}/\bar{x}}{\psi'}\right] \]
\[\models \vdash C^+\left[(\nu X(\bar{x}).\psi)(\bar{t})\right] \quad \text{FP-GFP}^+ \]

\[X(\bar{x}); p_1; p_2; \top \downarrow \text{nnf}(\psi) \quad \vdash C^+\left[p_1(\bar{t})\right] \quad \models \text{WF}(p_2) \]
\[\models \vdash C^+\left[(\mu X(\bar{x}).\psi)(\bar{t})\right] \quad \text{FP-LFP}^+ \]

\[X(\bar{x}); p_1; p_2; \top \uparrow \text{nnf}(\psi) \quad \vdash C^-\left[\neg p_1(\bar{t})\right] \quad \models \text{WF}(p_2) \]
\[\models \vdash C^-\left[(\nu X(\bar{x}).\psi)(\bar{t})\right] \quad \text{FP-GFP}^- \]

\[\text{Over-approximation of LFP (induction)} \]
\[\text{Under-approximation of GFP (co-induction)} \]

\[\psi \text{ represents a fixpoint-free formula.} \]
\[\text{nnf}(\psi) \text{ is negation normal form of } \psi. \]
\[C^+ \text{ (resp. } C^-\text{) is positive (resp. negative) context.} \]

Background first-order theory solver

Approximation of fixpoints using well-founded relation (see the paper for details)
Conclusion

• Foundation for **compositional & algorithmic** verification of **value-dependent temporal** properties of higher-order programs

1. Dependent refinement type & effect system
 • **Compositional** analysis of **dependent temporal effects** represented by predicates of **first-order fixpoint logic** \mathcal{L}
 • **Algorithmic** type checking via validity checking for \mathcal{L}

2. Deductive system for the validity of \mathcal{L}

<table>
<thead>
<tr>
<th></th>
<th>Over-Approximation</th>
<th>Under-Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFP</td>
<td>Invariant (induction)</td>
<td>Well-founded relation</td>
</tr>
<tr>
<td>GFP</td>
<td>Well-founded relation</td>
<td>Invariant (co-induction)</td>
</tr>
</tbody>
</table>

• Can be used with **any background first-order theory**
 • Enable other applications to program verification, which will be presented at the HCVS workshop on 13th