Axioms for Control Operators in the CPS Hierarchy
- Short Summary -

Y. Kameyama

University of Tsukuba

Paper in HOSC Journal
Each high-level programming language has its own set of control operators.

- Loop, recursion etc. in many languages.
- “go to” or jump in low-level languages.
- exception mechanism (Java’s try-catch-finally, Lisp’s catch/throw)
- continuation (Scheme’s call/cc, Ruby’s callcc)

Study on control operators is necessary:

- to have good structure of programs (to avoid “spaghetti” program.)
- to understand the semantics of programs, and to analyze/verify/transform programs.
Continuation is a notion which represents the rest of computation.

- \(([] + 3) \times 4\) is the continuation of \(1 \times 2\) in the expression \((1 \times 2 + 3) \times 4\)
- where \([]\) represents the current computation.
- By controlling continuations, we can control the execution sequence of programs.

Delimited Continuation is a notion which represents part of the rest of computation.

- \([] + 3\) is a delimited continuation of \(1 \times 2\) in the expression \((1 \times 2 + 3) \times 4\) up to the parenthesis.
- Or, Delimited continuations is a fragment of continuations.

Theorem

We can represent all the control effects in terms of delimited continuations.
Compilation of Programs

Typical Process of Compilation

"Modern" Compilation
Our question.

Question 1. Can we optimize programs in high-level languages sufficiently, or, in the same way as the optimization for intermediate languages?

The above question can be rewritten to:

Question 2. Can we identify a set of equations for high-level languages which has the same power as that for intermediate languages?
We have identified a set of equations for delimited-continuation control operators shift/reset (and its generalized ones) that satisfies:

- **soundness**: it is safe to use the equations for optimization.
- **completeness**: the equations are sufficient to optimize high-level programs with control operators.

The equations are very simple, thus “usable” for optimization of programs.

Our message: delimited-continuations are not too complex; they are usable control operators.