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Abstract

Code generation is the leading approach to making high-performance software
reusable. Effects are indispensable in code generators, whether to report failures
or to insert let-statements and if-guards. Extensive painful experience shows
that unrestricted effects interact with generated binders in undesirable ways to
produce unexpectedly unbound variables, or worse, unexpectedly bound ones.
These subtleties hinder domain experts in using and extending the generator. A
pressing problem is thus to express the desired effects while regulating them so
that the generated code is correct, or at least correctly scoped, by construction.

We present a code-combinator framework that lets us express arbitrary
monadic effects, including mutable references and delimited control, that move
open code across generated binders. The static types of our generator expres-
sions not only ensure that a well-typed generator produces well-typed and well-
scoped code. They also express the lexical scopes of generated binders and
prevent mixing up variables with different scopes. For the first time ever we
demonstrate statically safe and well-scoped loop interchange and constant fac-
toring from arbitrarily nested loops.

Our framework is implemented as a Haskell library that embeds an extensible
typed higher-order domain-specific language. It may be regarded as ‘staged
Haskell.’ To become practical, the library relies on higher-order abstract syntax
and polymorphism over generated type environments, and is written in the
mature language.
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1. Introduction

High-performance computing applications (scientific simulation [1], digital
signal processing [2], network routing [3], and many others) require domain-
specific optimizations that the typical domain expert performs by hand over
and over again to write each specialized program. Examples include selective
loop unrolling and loop tiling (described in §2.6); array padding, matrix tiling
and other data representation changes; writing specialized Gaussian elimina-
tion kernels [4]. The manual optimizations are not only excruciating: their
correctness is hard to see, they distort the code beyond recognition making it
unmaintainable, and they require significant and rare expertise, which cannot
be reused for similar cases. It is widely recognized in the high-performance
computing community (see [5] and references therein) that we cannot count
on optimizing compilers to perform these domain-specific optimizations. Code
generation has emerged as one of the most promising approaches to producing
optimal code with high confidence and relatively low effort [5].

In this approach, the optimal code is the result of a code generator – or is
selected from the results of a family of generators through empirical search. A
generator is built from reusable pieces written by different groups of experts;
the pieces encapsulate parts of the algorithm (such as dot-product or pivoting),
parameterized by optimizations (like partial loop unrolling and tiling, scalar
promotion) or specializations (such as the preferred data layout, or statically
known inputs). §2.6 shows off a few such pieces. The pieces may be regarded as
a domain-specific language (DSL). Ideally, they should compose: a user could
replace one algorithm with a putatively faster one or apply a different optimiza-
tion, without changing the rest of the generator. Furthermore, the user should
reason in terms of the generator pieces rather than the generated code: the
generator DSL should abstract over the code. The generated code should at the
very least be well-formed and well-typed, and hence compile without errors. The
end user hence should be spared from looking at it, let alone debugging compi-
lation problems. (The end user might not even know the target language of the
generator). We also require another property, which we dub well-scopedness. It
relates the generator and the generated code and is stronger than the absence of
unbound variables in the generator’s result. The property ensures the absence
of unexpectedly bound variables (we illustrate the surprising bindings in §4.1).
Somewhat informally, well-scopedness means that the scope of variables in the
generated code can be determined by statically examining the generator, before
running it.

The goals of expressivity, composability and static assurances are in conflict,
which so far has remained unresolved. (See §5 for the discussion of trade-offs.)
In this paper we report the first approach that simultaneously achieves the
goals. We express optimizations such as loop tiling, we change optimizations
without rewriting the rest of the generator, and we assure the well-formedness,
well-typedness as well as well-scopedness of the generated code.
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1.1. Code-generating combinators, effects, and scope extrusion

A generator is a program in one language (called a host language, or meta-
language) that produces programs in another, possibly different language (called
target, or object language). In the present paper, the metalanguage is Haskell.
One style of writing generators is filling in templates containing the target code
in the concrete syntax. Antiquotations in Lisp is the familiar example of such
code templates. The other style relies on code-generating combinators [6–8].
The former are quite more convenient for the user but require assistance from
the compiler and the typechecker. Code-generating combinators are more suit-
able for prototyping and investigating the design space (which is our activity).
In the rest of the paper, we focus on combinators.

To give a taste of building optimal code with code-generating combinators
and illustrate the subtle variable scoping problems that arise along the way, we
use the simple example of multiplying an n×m matrix a by a vector v obtaining
v’. The textbook matrix-vector multiplication algorithm is usually given as the
following C code, assuming the output vector, written as v1 in C, is initially
zeroed out.

for (j = 0; j≤m−1; j++ )
for (i = 0; i≤n−1; i++ )

v1[ i ] += a[i][ j ] ∗ v[ j ];

Written with code-generating combinators of our library, the example takes the
form

loop (int 0) (int (m−1)) (int 1) (lam $ \j →
loop (int 0) (int (n−1)) (int 1) (lam $ \i →
vec addto (weakens v’) (vr i ) =� :

(mat get (weakens a) (vr i ) (vr j ) 8 mulM8 vec get (weakens v) (vr j ))))

This example, discussed in detail in §2.6, is shown here just to give a rough
idea of how a generator of the matrix-vector multiplication may look like. On
the first line we see the combinator loop to build the loop in which the index
variable, represented by i in the loop body, ranges from 0 through m−1 with
the unit step; int generates the code for a given integer. The combinators
vec get and mat get generate the code to access an element of a vector or a
matrix; therefore, vec get (weakens v) (vr j) on the last line is to generate the
code corresponding to v[j] in the textbook algorithm. The function vr marks
the reference to a bound variable (the loop counter here). The near ubiquitous
weakens lets us refer to the representation of the target code from under binders.
The combinator vec addto produces the code to add a value to a given vector
element. Each combination and the whole expression, when evaluated, produces
some representation for the target code, a ‘code value’. Typical representations
are the abstract syntax tree (AST) or text strings. In the rest of the paper, for
clarity and concreteness, the combinators produce Haskell code (although other
choices are possible, including OCaml, JavaScript, etc.)

It should be clear by now that the generated code is imperative, as was the C
algorithm. What mat get and vec get produce is the effectful code to read from a
mutable array. If the target language is Haskell, then mat get would generate an
IO Double expression. The combinator mulM takes two pieces of the generated
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effectful code and emits the code to multiply them. The imperative nature of
the generated code comes through in (=� :), which arranges so that at the
run time of the produced code, first the effects of getting a and v elements are
performed and their product is obtained; then the vector v’ is updated inplace
with the resulting value. Again, if the target code is Haskell, (=� :) is the
combinator that generates the monadic bind expression.

There may be several implementations of the combinator loop. In fact, there
could be libraries of loop combinators written by high-performance computing
experts. Besides the straightforward generation of the simple loop forM [0,1..m−1]1
the combinator may strip a loop into blocks, effectively converting a loop into
two nested loops (the outer iterating over blocks and the inner iterating within a
block). Such a combinator implements the classical ‘strip mining’ optimization.
For example, with the blocking factor 4, the strip-mining loop will generate

forM [0,4.. m−1] $ \jj →
forM [ jj , jj +1..min (jj +3) (m−1)] $ \j →
forM [0,4.. n−1] $ \ii →
forM [ ii , ii +1..min (ii +3) (n−1)] $ \i →

...

Strip-mining is a common optimization, used, for example, as the first phase of
vectorization. The blocking factor may be requested from the user or learned.
That is, the generator non-deterministically produces several candidates with
different degrees of blocking, to benchmark and choose the fastest. SPIRAL [2]
is based on this idea. Generators, therefore, need effects such as IO, exceptions,
and non-determinism. We stress that now we are talking about effects when
generating code – rather than IO, mutation and other effects that the generated
code itself may perform.

We are particularly interested in control effects that are necessary for the
follow-up optimization, changing the order of the loops, to produce so-called
‘tiled loops’

forM [0,4.. m−1] $ \jj →
forM [0,4.. n−1] $ \ii →

forM [ jj , jj +1..min (jj +3) (m−1)] $ \j →
forM [ ii , ii +1..min (ii +3) (n−1)] $ \i →

...

which is one of the very profitable optimizations. Our aim is to write a genera-
tor once, following the textbook algorithm, and then to choose an appropriate
implementation of loop for strip-mining, tiling and other optimizations.

To achieve loop tiling, specifically, to interchange striped loops, the two loop
combinators in the sample code must interact – they have to be effectful. The
danger of producing ill-scoped code is also clear. For example, if the wrong
loops are interchanged, we may move the code that uses jj past its binder:

forM [ jj , jj +1..min (jj +3) (m−1)] $ \j →
forM [0,4.. m−1] $ \jj →
...

which is called ‘scope extrusion’. This error becomes devious if the above code

1forM [lb,lb+st..ub] (\i → body) is how for i=lb to ub step st do body is written in Haskell.
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is part of a program with another binder for jj :: Int. The generated code will
successfully compile and even run, but with subtle errors. A similar optimiza-
tion, also requiring control effects, is loop-invariant code motion, moving the
code that does not depend on the loop index out of the loop. Moving out the
code that does depend on the loop index again creates scope extrusion. We
wish to prevent scope extrusion statically and right away, even for separate pro-
gram fragments. The code should be well-typed and well-scoped as it is being
constructed.

Performing optimization like loop interchange while statically preventing
scope extrusion was identified as an open problem by Cohen et al. [5]. We
summarize in §5.2 what makes the problem so difficult. It is only now that the
problem has been solved, in a mainstream metalanguage such as Haskell, in a
code-generation framework that can be used in practice.

1.2. Contributions

Our goal was to generate code with modular combinators that statically
assure that the results (even intermediate, open results) are well-formed and
well-typed. This goal is achieved. Specifically, our contributions are as follows.

First, we present a method for writing code combinators that may do arbi-
trary monadic effects – including effects that move open code across generated
binders – and yet preserve lexical scope (hygiene). The key ingredients are:

• tagless-final style of encoding target language in the metalanguage [9], to
ensure the generation of well-typed code: §3;

• applicative functors, or applicatives, [10] to represent the type environment
of open target code: §3.1;

• first-class polymorphism, to ensure free variables in the target code are
manipulated strictly within the dynamic extent of the generator that later
binds them: §4.1;

• new applicative CPS hierarchy, for let-insertion, loop interchange, or, gen-
erally moving code that contains binding forms across another binding
form: §3.2:

We use types to express and enforce a notion of lexical scope on generated code.
Our type discipline ensures that generated variables are always bound inten-
tionally, never captured accidentally. We argue (see §4.1 for details) that lexical
scope in a code generator means that different generated variables cannot be
substituted for each other (because they have different types in our system), even
if they have the same named label or the same De Bruijn index. In the present
paper, our argumentation is informal. The formalization is quite involved and
is the subject of another paper. We stress that our method requires neither
intersection nor dependent types; all the needed features such as higher-rank
types are commonly available in mainstream functional languages.

Second, we present a Haskell library of code-generating combinators, which
we built to validate our approach. This paper explains our approach to effects
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and scope by describing this library. Our concrete examples show how to express
effects on open code across generated binders, as well as how rank-2 types enforce
lexical scope.

Although we use Haskell extensively in the paper for the sake of concreteness
and presentation, we stress that Haskell is not essential for our approach of safely
combining code generation and effects. Granted, describing the Haskell library
and presenting its examples necessarily involves a great deal of Haskell code. We
explain the parts that may likely cause confusion for non-Haskell programmers.
It might appear from the presentation that our approach is too dependent on
Haskell and difficult if not impossible to transfer to other functional languages.
To allay these concerns, we first point out that the first presentation [9] of
the tagless-final style, a key ingredient of our approach, was done in OCaml
and with ordinary, second-class OCaml modules. The tagless-final style has
been used in Scala, where it inspired the highly-successful lightweight modu-
lar staging LMS [11]. The second key ingredient, first-class polymorphism and
higher-rank types, are also commonly at hand (in OCaml and Scala). Monad
and applicative abstractions require higher-order types, that is, abstracting over
type constructors. Such types are not available in OCaml – but can be emu-
lated [12]. On the other hand, our use of applicatives is itself an emulation, of an
effect system. Languages with the native effect systems such as AST, Idris, and
Rust can realize our approach more directly. Finally, a bare-bone implementa-
tion of our library replaces the type classes with the explicit dictionary passing
(for an example of doing this for the tagless-final approach, see [13, §2.4]). The
plumbing, the dictionary passing, can be hidden in the code-generating combi-
nators. Thus Haskell type classes, although adding quite a bit of convenience,
are not at all essential to our approach. We could have used the added con-
venience of type classes to a larger extent (by overloading operations such as
the ordinary (∗ ) as well as (∗: ) and mulM that we shall soon encounter). We
deliberately refrain from too much of the type-class sugar, making the library
more spartan and hence more portable and accessible.

Our library is not yet ready for real-life applications like those supported by
MetaOCaml [14]. First, the syntax is rather heavy. We write int 1 +: int 2

to generate the code for 1 + 2. (We avoid overloading Haskell’s type class Num,
for clarity and to emphasize that our approach is not restricted to Haskell but
works in any functional language with higher-rank polymorphism.) Moreover,
weakening coercions have to be applied explicitly to generated code, and there
is no syntactic sugar for pattern matching. (Again, type-class overloading can
help.) Although we have implemented many interesting examples with our
library, more experience is needed to recommend its wide practical use. Still,
our library is imminently practical in that

1. it has been built in the mature language Haskell, not an experimental
language with a dearth of documentation and tools;

2. it uses higher-order abstract syntax (HOAS) [15–17] rather than De Bruijn
indices, so bindings in the generator are human-readable;

3. it allows polymorphism over generated environments, so the same gener-
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ator module can be reused in many environments;

4. in many cases, the types are inferred. The type signature is only necessary
for generator functions that, informally, “take the target code and put it
under a generated lambda”2

5. the language of generated code can easily be extended with more features
and constants (this paper shows many examples) or changed to any other
language – typed or untyped, first- or higher-order.

Our library can serve as a prototype for a more expressive and yet statically safer
Template Haskell, permitting arbitrary effects including IO while still ensuring
the generation of the well-typed and well-scoped code (§5 explains why the
current Template Haskell falls short.)

Finally, we propose a new applicative continuation-passing-style (CPS) hi-
erarchy that allows loop interchange and let-insertion across several generated
bindings. These tasks cannot be accomplished in the traditional CPS hierarchy
[18].

The structure of the paper. 3 The next section introduces the interface of our
library and explains it on simple examples of code generation with effects. We
then turn to the examples that were not possible to write before with static
well-scopedness assurances: in §2.3 we store open code in mutable variables
across binders, and in §2.5 we do the invariant code motion, which changes the
order of binding forms. Attempts to move open code beyond the binders of its
variables are flagged as type errors. §2.6 describes a case study of using our
library for common loop optimizations: loop interchange and loop tiling. We
briefly outline the implementation in §3, and describe and informally justify in
§4 the static assurances of our generators. §5 discusses related work, specifically
the comparison with Template Haskell (TH).

For brevity and clarity, the code shown in the paper is not always self-
contained. Furthermore, we omit type class constraints on some, specifically
named type variables, following the conventions introduced as needed. Should
confusion arise the reader may refer to Figure 1 and 3, which show the complete
signatures of the public functions in our library. Furthermore, the complete code
is available online at http://okmij.org/ftp/tagless-final/TaglessStaged/.

2. Library

This section presents our library of impure and yet hygienic code-generating
combinators and illustrates it on a progression of examples. Figure 1 shows the

2for generators that introduce multiple target code variables, especially the statically un-
known number of them, we sometimes have to prove that the composition of applicatives is
associative, by explicitly writing the corresponding conversion functions.

3The present paper is an extended version of the paper published in the proceedings of
PEPM 2014. We have extended explanations all throughout the paper, especially the expla-
nation of performing monadic effects during code generation in §2.3. Sections 2.4, 3.1, 3.2 and
5.2 are new.
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library interface.
The target code is treated as an EDSL, a domain-specific language embed-

ded in Haskell. The target language is simply-typed4: the target code of type t
is represented as a Haskell value of the type repr t. It is a coincidence that the
same Int denotes the integer type both in Haskell and in the target language.
The Haskell function (combinator) intS represents an integer literal of the target
language, and addS stands for the target’s addition function. The combinator
appS, which combines two code values, denotes application in the target lan-
guage. Whereas (1 +2):: Int, which is the same as (+) 1 2, expresses Haskell’s
addition, exS1 of the characteristic type below

exS1 :: SSym repr ⇒ repr Int
exS1 = (addS 8appS8 intS 1) 8 appS8 intS 2

represents an integer expression in the target language for adding the two inte-
gers. We should have said, however pedantic for now, that exS1 is the Haskell
expression that, when evaluated, produces a value representing “1+2” in the
target language. The types, inferred by the Haskell compiler, make it clear
which Haskell expressions denote target code, that is, are code generators. The
latter have the type like that of exS1; one may even read repr Int as “the type
of code for an integer expression”. By convention, we will often elide the type
class constraint SSym repr (or similar constraints SymLet, LamPure, etc.) for
the type variable named repr.

The method of embedding a language by defining its primitives as methods
of a type class such as SSym repr – with the parameter repr :: ∗ → ∗ standing for
a concrete realization indexed by the expression’s type – is called the “tagless
final” approach [9]. The approach encourages several concrete realizations of the
target language. Our library provides two. The first is a so-called meta-circular
interpreter: the type R, which is the instance of SSym and similar extension
classes, takes the target code to be a subset of Haskell and realizes the code
as a Haskell expression: R is essentially the identity functor. Since Haskell
is non-strict, it is more precise to say that the R-realization represents target
code as a ‘thunk.’ The C-realization also takes the target code to be Haskell,
but represents it as a Haskell AST. The function runCS pretty-prints the AST,
letting us see the generated code. For example, runCS exS1, instantiating repr
to C, produces ”(GHC.Num.+) 1 2”. (When showing the code we shall assume
hereafter a prettier-printer that elides the module qualification GHC.Num and
uses the infix notation.) The generated code can be ‘spliced-in’ using Template
Haskell (TH), or saved into a file and compiled separately.

4Producing well-typed code in C or Fortran, whose type systems differ from the type system
of the generator, is described in [19]. It is possible to embed in Haskell target languages with
polymorphism, and also the languages whose type system is not at all like Haskell, for example,
linear lambda-calculus or non-associative Lambek calculus. For the present paper, we limit
ourselves to simply-typed target language.
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Pure base combinators
class SSym repr where

intS :: Int → repr Int
addS :: repr (Int → Int → Int )
mulS :: repr (Int → Int → Int )
appS :: repr (a→ b) → (repr a → repr b)

Two representations of the code
newtype R a = R{unR :: a}

type C a −− Haskell AST
runCS :: C a → String −− pretty−printed AST

Generating code with effects, in an applicative m
infixl 2 $$

($$ ) :: (SSym repr, Applicative m) ⇒ m (repr (a→ b)) → m (repr a) → m (repr b)
int :: (SSym repr, Applicative m) ⇒ Int → m (repr Int )

infixl 7 ∗: infixl 6 +:
(+: ), (∗: ) :: (SSym repr, Applicative m) ⇒

m (repr Int ) → m (repr Int ) → m (repr Int )

−− Composition of two type constructors (kind ∗ → ∗ )
newtype (i ◦ j ) a = J{unJ:: i (j a)}
liftJ :: (Applicative m, Applicative i ) ⇒ m a → (m ◦ i ) a

runR :: Applicative m ⇒ (m ◦ Identity ) (R a) → m a
runC :: Applicative m ⇒ (m ◦ Identity ) (C a) → m String

Higher-order fragment
class LamPure repr where

lamS :: (repr a → repr b) → repr (a→ b)

lam :: (Applicative m, AppLiftable i , SSym repr, LamPure repr) ⇒
(∀ j . AppLiftable j ⇒ (i ◦ j ) (repr a) → (m ◦ (i ◦ j )) (repr b))
→ (m ◦ i ) (repr (a→ b))

var :: Applicative m ⇒ i (repr a) → (m ◦ i ) (repr a)
weaken :: (Applicative m, Applicative i , Applicative j ) ⇒

(m ◦ i ) (repr a) → (m ◦ (i ◦ j )) (repr a)

class (Applicative m, Applicative n) ⇒ Extends m n where
weakens :: m a → n a

vr :: (Applicative m, Extends (m ◦ i ) (m ◦ j )) ⇒ i (repr a) → (m ◦ j ) (repr a)
vr = weakens ◦ var

Extension: let-expressions
class SymLet repr where

let S :: repr a → (repr a → repr b) → repr b

let :: (SSym repr, SymLet repr, Applicative m, Applicative i ) ⇒
(m ◦ i ) (repr a)
→ (∀ j . AppLiftable j ⇒ (i ◦ j ) (repr a) → (m ◦ (i ◦ j )) (repr b))
→ (m ◦ i ) (repr b)

Figure 1: The interface of hygienic code-generating combinators
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Interface of functors
class Functor i where

fmap :: (a → b) → i a → i b

class Functor i ⇒ Applicative i where
pure :: a → i a
(<∗>) :: i (a → b) → i a → i b

class Applicative j ⇒ AppLiftable j where
app pull :: Applicative i ⇒ i (j a) → j (i a)

Sample instances for the Reader applicative e→ · (or, ((→ ) e) in Haskell nota-
tion): functions of the fixed argument type e

instance Functor ((→ ) e) where
fmap f i = f ◦ i

instance Applicative ((→ ) e) where
pure x = \e → x
(<∗>) f g = \e → f e (g e)

instance AppLiftable ((→ ) e) where
app pull ija = \e → fmap ($ e) ija

Closure under composition
instance (Applicative i , Applicative j ) ⇒ Applicative (i ◦ j )

instance (AppLiftable j , AppLiftable k) ⇒ AppLiftable (j ◦ k) where
app pull = J ◦ fmap app pull ◦ app pull ◦ fmap unJ

Figure 2: Applicatives: applicative functors

2.1. Faulty power

As the first example to illustrate our library we take the canonical power –
specializing xn to the given value of n [20]. Already this trivial example calls for
effects in code generation – although this aspect of power is frequently glossed
over. Since the effect here is simple – throwing a string as an exception – all
code-generation frameworks (for example, MetaOCaml, Mint [21] or λ� [22])
can assure the generation of well-scoped code. We rely on the simplicity and
the familiarity of power to introduce our library, pointing out how it ensures
well-scopedness by design. The later sections show off this design in full, demon-
strating the unique expressive power of our library.

The integral exponentiation xn can be written in Haskell as:
type ErrMsg = String
powerF :: (ErrT m ˜ ErrMsg, ErrorA m) ⇒ Int → Int → m Int
powerF 0 x = pure 1
powerF n x | n >0 = fmap (x ∗ ) (powerF (n−1) x)
powerF = throwA ”negative exponent”

Unlike the common presentations of power, we have made clear its partiality:
it is not defined for the negative values of the exponent. We use the Error
applicative (the Error monad, which is also an applicative) to throw a String
exception. (The reason for using applicatives will become clear soon.)
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Recall that applicatives, or applicatives functors [10], represent effectful com-
putations, like monads. In fact, applicatives are a super-set of monads and have
a similar interface: Fig. 2. Applicative’s pure is the same as monadic return, lift-
ing any value into an applicative computation. Two applicative computations
are combined via (<∗>), which is weaker than monadic bind (�= ) in the sense
that the result of the first applicative computation cannot be used to choose
the next computation to perform. Unlike monads, applicatives are closed under
composition. Hereafter we shall assume that the type variables m, i and j rep-
resent applicatives; therefore, we will often omit the Applicative (or AppLiftable,
see below) constraint. Should the confusion arise, please refer to Fig. 1, which
shows complete signatures.

Our task is to specialize powerF to the statically known value of the expo-
nent: to generate the code computing xn for the given value of n. We are to
write a generator, which takes an integer n and the code for “x”. Since the
exponentiation is partial, we have to decide what to do if that n turns out to be
negative. The straightforward specialization of powerF will generate the code
that throws the exception. Although the library presented so far, in Fig. 1,
lets us generate only pure code, extending the library to build effectful code is
straightforward. In fact, the introductory example in §1.1 (described in detail
in §2.6) generated code that mutates a vector inplace. One may argue, however,
against the straightforward specialization of powerF: if the code computing xn

for the given value of n cannot be generated, we should not be generating any
code at all. The generator itself should throw the exception. The problematic
negative exponent should be reported and appropriately handled well before
running the generated program. The specialized powerF therefore should have
the following type

spowerF :: (SSym repr, ErrT m ˜ ErrMsg, ErrorA m) ⇒
Int → m (repr Int ) → m (repr Int )

Recall, repr Int is the type of a code value, the code of an Int expression;
m (repr Int) is the type of a computation that will generate Int code and possibly
have effects. We represent effects in an applicative rather than in a full monad
(we will soon see applicatives that are not monads).

To write spowerF of this signature we have to ‘lift’ our primitive code gen-
erators such as intS and mulS to an applicative m. Figure 1 shows such lifted
generators; for example, (∗: ) combines two pieces of generated code to build
their product, while performing the effects of their generation.

spowerF :: (SSym repr, ErrT m ˜ ErrMsg, ErrorA m) ⇒
Int → m (repr Int ) → m (repr Int )

spowerF 0 x = int 1
spowerF n x | n >0 = x ∗: spowerF (n−1) x
spowerF = throwA ”negative exponent”

The generator spowerF is lucid and obviously correct, matching in appearance
the original, ‘textbook’ code powerF. One may even worry that spowerF matches
powerF too closely: in either case, the error is thrown only when the function is
applied to both arguments. However, in powerF the second argument, x:: Int, is
a value to exponentiate. In spowerF, the second argument has a different type:
x :: m (repr Int); it is the code for the value to exponentiate. The argument is
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supplied at the code generation time rather than at the exponentiation time.
We now describe how this argument is supplied and hence how we generate code
for functions. After all, the specialized exponentiation should be an Int→ Int
function.

Our library provides the primitive lamS for generating functions in the target
code (see Figure 1), which uses higher-order abstract syntax (HOAS), relying
on Haskell functions to represent the bodies of target functions. For instance,
the code for the twice eta-expanded addition is generated by

exS2 :: repr (Int→ Int→ Int)
exS2 = lamS(\x → lamS (\y → addS 8appS8 x 8appS8 y))

In HOAS, bound variables in the target code are represented by Haskell vari-
ables, of the type repr t. We get to use the familiar Haskell notation for target-
code functions, with human-readable variable names and with the automatic
α-conversion. For that reason, HOAS is popular in code generation; for a good
early example see Xi et al. [7]. The tagless-final approach uses HOAS too [9];
that paper (and the accompanying code) describes the instances of LamPure for
our two concrete realizations, R and C. The latter instance lets us see the gen-
erated code; for example, runCS exS2 gives ”\x 0 → \x 1 → x 0 + x 1” (the
C interpreter makes its own variable names). The alternative to HOAS is De
Bruijn indices, which were also used in [9]. One would not want to write more
than a couple of lines of code with De Bruijn indices.

We stress that we pursue the so-called pure generative approach, which
treats the generated code as a black box (See the related work section for other
approaches and their comparison). For us, the representation of code values is
opaque; we may only combine code values. Therefore our library deliberately
offers no facilities to examine the generated code.

To finish our task of specializing powerF we want to write lamS (\x → spowerF n x),
but it will not type. The argument of lamS is a function that should return a
code value, of the type repr Int. However, spowerF is an effectful generator, of
the type m (repr Int). We have to ‘lift’ lamS to the applicative in which the
body of the function was generated. The effect of generating the body should
be allowed to ‘propagate through the binder’: if the generation of the body of
the function terminates with an exception, the same exception should termi-
nate the generation of the whole function. Such a lifting to an applicative is
the major innovation of the paper; it is here where our code generating library
differs sharply from the state of the art, such as MetaOCaml, Template Haskell
or Scala LMS. The main problem to overcome is that the ‘effect propagation’
threatens well-scopedness. Although no ill-scoped code can come from a simple
string exception, an exception that carries open code may well lead to code with
unbound variables. This problem of permitting arbitrary effects and statically
ensuring well-scopedness is a difficult one. The solution has to be involved.

The combinator lam in Figure 1 produces the code of an a→ b function in
an applicative m ◦ i, which is a composition of two applicatives m and i. (The
applicative m may be, and often is, a monad. The composition m ◦ i however
is generally not a monad.) One may think of m as representing an effect of code
generation such as throwing exceptions and of i as representing the (type) envi-
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ronment describing the free variables that may occur in the generated code. To
put it differently, i denotes the effect of generating target-code variables. The
argument of lam is to build the body of the function, in the applicative m ◦ i’
where i’ is itself the composition i ◦ j. The applicative j represents the environ-
ment for the fresh free variable that will be bound by the lam. The composition
i ◦ j is in effect the concatenation of the corresponding type environments.5

The applicatives i and j must be AppLiftable, see Fig. 2, with an additional
law app pull that makes their composition (partially) commute, to support the
familiar exchange rule for the components of type environments. (AppLiftable
applicatives are also closed under composition. The Identity and the Reader ap-
plicatives are AppLiftable.) The generator for the body of the function receives
as its argument the value (i ◦ j) (repr a) representing the bound variable. The
combinator var lifts the variable to the type (m ◦ (i ◦ j)) (repr a) so that it can
be combined with other generators. The reasons for such an intricate type of
lam will become clear much later, in §4. For now, we point out the similarity
with runST of Haskell’s ST monad. The higher-rank type of lam prevents ‘leak-
ing’ of bound variables, just like the type of runST, namely (∀s. ST s a) → a,
prevents leaking of references created within its region.

We now have all the ingredients to complete the task: the following is the
generator of the exponentiation function specialized to the given exponent. Its
inferred type makes it clear that the result is either the code for the Int→ Int
function, or an exception.

spowerFn :: (LamPure repr, SSym repr, AppLiftable i , ErrorA m, ErrT m ˜ ErrMsg) ⇒
Int → (m ◦ i ) (repr (Int → Int ))

spowerFn n = lam (\x → spowerF n (var x))

To run the generator and see the generated code, we instantiate m to be
Either ErrMsg (a particular error applicative) and i to be the Identity. The
accompanying code, file TSPower.hs, includes several sample specializations.

2.2. Tracing

To illustrate the remaining core part of our library, weaken, we need another
example. It will also demonstrate code generation with IO, to print a trace.
The tracing is not part of the library; rather, it is easily defined by the user as

trace :: String → (IO ◦ i ) a → (IO ◦ i ) a
trace msg m = liftJ (putStrLn msg) ∗> m

using the Haskell Prelude’s action putStrLn msg :: IO () to print the msg on the
standard input. The IO () action is lifted to the (IO ◦ i) () applicative with liftJ,
which is also user-definable. Our library nevertheless provides it for convenience,
see Figure 1. Since putStrLn msg produces the dummy result () not used in
subsequent computations, IO in this action can be treated as an applicative;
liftJ hence lifts an applicative action to a ‘richer’ applicative. §2.3 shows off
code generation with a truly monadic rather than a mere applicative effect.

5To some extent i is similar to an environment classifier [23]: both describe a set of free
variables in the generated code. However, environment classifiers are coarse-grained: new
bindings introduced by lam do not affect the classifier.
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The user-defined addt below logs all generated additions; the trace is emitted
when the code is generated, rather than when it is executed.

addt :: (IO ◦ i )( repr Int ) → (IO ◦ i )( repr Int ) → (IO ◦ i )( repr Int )
addt x y = trace ”generating add” (x +: y)

The simplest example generates the code for the addition function, and logs
that fact:

ex2 :: (IO ◦ i ) (repr (Int → Int → Int ))
ex2 = lam (\x → lam (\y → weaken (var x) 8 addt8 var y))

From the type of lam in Figure 1 we deduce the types
x :: (IO ◦ (i ◦ j1 )) (repr Int )
y :: (IO ◦ (( i ◦ j1 ) ◦ j2 )) (repr Int )

where j1 is the AppLiftable introduced by the outer lam and j2 comes from the
inner lam. That is, x and y both denote integer variables in the generated code,
but in different type environments. The environment of y is longer. Therefore,
to use x and y in the same expression, we need to make the type of x the same as
the type of y, that is, to weaken x. Weakening asserts that a variable in a type
environment is a variable in any longer environment. The explicit weaken is a
chore, which can be automated in many cases with weakens – the method in the
type class Extends m n that checks that the applicative type n is a weakened,
by 0 or more steps, version of m. So, our example can be re-written as

ex2 = lam (\x → lam (\y → weakens (var x) 8 addt8 weakens (var y)))

Since the composition weakens ◦ var occurs frequently, it is given the name vr.
The example takes the final form

ex2 = lam (\x → lam (\y → vr x 8 addt8 vr y))

On the simplest examples of power and addition we have seen the main
components of our code-generation framework. The accompanying code, file
TSEx.hs, has many more examples, some significantly more complex. The next
sections will show generators where the danger of scope extrusion is real. The
coming examples were not possible to generate in the existing mainstream frame-
works such as MetaOCaml or TH while statically assuring the absence of scope
extrusion at all times.

2.3. Moving open code

The warm-up example in §2.1 was rather simple, and could be implemented
with the existing techniques, such as Mint [21] or a trivial ad hoc extension
of λ� [22]. The code-generation library introduced in §2.1 permits however
the manipulation of open code in any applicative. Furthermore, it permits
not just applicative but also monadic effects. The generation applicative can
truly be anything, far beyond throwing text-string exceptions. In this section we
instantiate the generation applicative to that of reference cells, and demonstrate
monadic effects of storing open code and retrieving it across the binders, while
statically ensuring the generation of well-scoped code. We demonstrate that
scope extrusion becomes a type error. That is beyond any existing higher-order
code-generation approach with safe code motion.

Before we get to our main example, we have to clear a hurdle. We intend to
use IORef reference cells, whose creation requires monadic, not just applicative
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effects. We describe this problem and its simple solution in detail, to illus-
trate that our applicative code generation framework indeed permits arbitrary
monadic effects on open code. We will also gain the intuition about the central
role of applicatives. The first example stores integer code in a reference cell and
generates the code by reading it from the cell. First we need to create a reference
cell holding, for example, a literal 1: newIORef (intS 1) :: IO (IORef (repr Int)).
This IO action can be lifted to the generating applicative (IO ◦ i):

ref1 :: (IO ◦ i ) (IORef (repr Int ))
ref1 = liftJ $ newIORef (intS 1)

The only way we can read from our reference cell using the applicative interface
is

readBad :: (IO ◦ i ) (IO (repr Int ))
readBad = fmap readIORef ref1

which however has a wrong type for the Int code generator. To transform
readBad to the desired type (IO ◦ i) (repr Int), we either need an operation
IO (repr Int) → repr Int (which the IO monad deliberately does not provide),
or attempt

join ◦ tr $ readBad where
tr :: (IO ◦ i ) (IO (repr Int )) → (IO ◦ i ) (( IO ◦ i ) (repr Int ))
tr = fmap liftJ
join :: (IO ◦ i ) (( IO ◦ i ) (repr Int )) → (( IO ◦ i ) (repr Int ))
join = ???

Alas, the needed join does not exists since (IO ◦ i) is generally not a monad.
Manipulating reference cells hence requires monadic, not just applicative effects.

Recall that IO ◦ i is a composition of IO and an applicative i; that is, modulo
the annoying but inevitable J and unJ newtype wrapping, (IO ◦ i) (repr Int) is
just IO (i (repr Int)) – which is the type that lets us do arbitrary IO operations.
Our example of creating a reference cell and generating code by reading from
it is implemented as follows, taking the full advantage of monadic bind and the
do-notation.

withRef :: a → (IORef a → (IO ◦ i ) (repr w)) → (IO ◦ i ) (repr w)
withRef v k = J $ do

r ← newIORef v
unJ $ k r

readGood :: (IO ◦ i ) (repr Int )
readGood = withRef (intS 1) $ \r → J $ do

v ← readIORef r
return $ pure v

To illustrate how monadic operations play together with applicative generators,
e.g., lam, we extend the example to read from the reference cell as we generate
the body of a function:

readBetter :: (IO ◦ i ) (repr (Int → Int → Int ))
readBetter =

lam (\x →
tiorefWith x (\r →
lam (\y → var y +: (weaken ◦ J $ readIORef r))))

(The generated code is \x 0 → \x 1 → x 1 +x 0). It is instructive to see what
happens if we attempt to ‘leak out’ a bound variable, that is, write y into the
reference cell r accessible outside the inner lam:
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readFail :: (IO ◦ i ) (repr (Int → Int → Int ))
readFail =

lam (\x →
tiorefWith x (\r →
lam (\y → var y +: (weaken ◦ J $ do

v ← readIORef r
writeIORef r y
return v))))

Type checking of this code fails, with the error message6:
Occurs check: cannot construct the infinite type: i ˜ i ◦ j
Expected type: (◦ ) i j (repr Int )

Actual type: (◦ ) (i ◦ j ) j1 (repr Int )
Relevant bindings include

v :: (◦ ) i j (repr Int )
y :: (◦ ) (i ◦ j ) j1 (repr Int )
r :: IORef ((◦ ) i j (repr Int ))
x :: (◦ ) i j (repr Int )
tioref6 :: (◦ ) IO i (repr (Int → Int → Int ))

In the second argument of writeIORef, namely y
In a stmt of a do block: writeIORef r y

The message explicitly names the culprit: “the second argument of writeIORef,
namely y”, and the problem: the attempt to put y into a reference cell that
stores code in a “shorter” applicative. That is, y will escape its scope. The error
message gives a hint at the role of the type (m ◦ i) (repr a) in our framework:
this type, isomorphic to m (i (repr a)) lets us do arbitrary monadic effects in
the monad m on a target code expression, but that expression must always be
wrapped in an applicative i. In other words, we can manipulate open code but
only the code that is explicitly marked with the typing environment for free
variables. It is this explicit marking that prevents leaking out of the variable y
in readFail: the bound variable y has the type ((i ◦ j) ◦ j1) (repr Int), where j1
represents the environment for the fresh variable of the inner lam. The variable
y cannot be stored in a reference cell whose type does not provide for that j1.
We get the first glimpse at how types tell and enforce the variable scope in our
framework. We return to this point in §3.

We now turn to our main example of assertion-insertion, a special case of
if-insertion. It has been described in detail in [22], which argued that in practice
an assertion has to be inserted beyond the closest binder. Such an insertion was
left to future work – which becomes the present work in this section. For the
sake of exposition, we first demonstrate open code motion under a binder; a
simple modification will move beyond the binder.

We start by extending our DSL with assertPos and the integral division (/:),
see Figure 3. The tagless-final approach makes extending an EDSL trivial, by
defining a new type class and its instances for the existing interpreters, R and C
in our case. The expression assertPos test m will generate an assertion statement

6It is well-known that (type) error messages are the most troublesome aspect of embedded
DSLs: they report a problem with the DSL code in terms of the (often significantly more
complex) meta-language. For the discussion of the problem and some of its solutions, please
see [8, §7] and especially [24].
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class AssertPos repr where
assertPosS :: repr Int → repr a → repr a

assertPos :: m (repr Int ) → m (repr a) → m (repr a)

class SymDIV repr where divS :: repr (Int → Int → Int )
infixl 7 /:
(/:) :: m (repr Int ) → m (repr Int ) → m (repr Int )

Figure 3: Library extension: assertion statement and integer division

in the target code, to check that the code generated by test produces a positive
integer. If the assertion checks, the code m is run; otherwise the program is
abnormally terminated.

Our goal is to write a guarded division, making sure the divisor is positive.
The first version is

guarded div1 :: m (repr Int ) → m (repr Int ) → m (repr Int )
guarded div1 x y = assertPos y (x /: y)

to be used as
lam (\y → complex exp +: guarded div1 (int 10) (var y))

The first version is unsatisfactory: we check for the divisor right before doing
the division. If the divisor is zero, we crash the program wasting all the (poten-
tially long) computations done before. The error should be reported as soon as
possible, when we learn the value of the divisor. We have to move the assertion
code.

We can accomplish the movement with reference cells. We allocate a refer-
ence cell holding a code-to-code transformer, originally identity. As the code is
generated, the cell accumulates post-hoc transformations. At the point where
the assertions are to be inserted, the assertion locus, the resulting transformer
is retrieved and applied to the generated code. The code below implements the
idea, using IO and its reference cells IORef. The code follows the pattern of the
simple examples at the beginning of the section.

assert locus :: (IORef ((IO ◦ i ) (repr a) → (IO ◦ i ) (repr a)) → (IO ◦ i ) (repr a))
→ (IO ◦ i ) (repr a)

assert locus f = J $ do
assert code ref ← newIORef id
mv ← f assert code ref
transformer ← readIORef assert code ref
transformer (pure mv)

We re-define guarded division to insert the positive divisor assertion at the given
locus, that is, to modify the contents of the cell locus, composing the current
transformer with assertPos test.

add assert :: IORef (m a → m a) → (m a → m a) → (IO ◦ i ) ()
add assert locus transformer =

liftJ $ modifyIORef locus ( ◦ transformer)

guarded div2 locus x y =
add assert locus (assertPos y) ∗> x /: y

Here is the example:
exdiv2 = lam (\y → assert locus $ \locus →

complex exp +: guarded div2 locus (int 10) (vr y))
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The generated code
\x 0 → assert (x 0 >0) (complex code +(div 10 x 0))

demonstrates that assert is inserted before the complex code, right under the
binder, as desired. We stress that the code transformer, assertPos y, includes
the open code. We do store functions that contain open code. However, the ref-
erence cell that accumulates the transformer has been manipulated completely
inside a binder. There is no risk of scope extrusion then. The above example is
hence implementable in λ�[22].

In the second, main part of our example, we change guarded div2 slightly
so that it may insert the assertion even beyond the binder. Such a movement
of the open code has not been possible before, while ensuring well-scopedness.
The modification to guarded div2 is simple: adding the generic weakens. The
inferred signature tells the difference

guarded div3 :: (Extends m (IO ◦ i )) ⇒
IORef (m (repr a) → m (repr a))
→ (IO ◦ i ) (repr Int ) → m (repr Int ) → (IO ◦ i ) (repr Int )

guarded div3 locus x y =
add assert locus (assertPos y) ∗> x /: weakens y

The divisor and the dividend expressions do not have to be in the same environ-
ment; the environment of the dividend, (IO ◦ i), may be weaker, by an arbitrary
amount. The generalized guarded div3 can be used in place of guarded div2 in
exdiv2. A more general example becomes possible:

exdiv3 = lam (\y → assert locus $ \locus →
lam (\x → complex exp +:

guarded div3 locus (vr x) (vr y)))

The generated code
\x 0 → assert (x 0 >0) (\x 1 → complex code +(div x 1 x 0))

shows the variable positivity assertion is inserted right after the binding for that
variable, at the earliest possible moment – exactly as desired. Thus assertPos (var y)
has really been moved across the binder. If we make a mistake and switch x
and y

lam (\x → assert locus $ \locus →
lam (\y → complex exp +:

guarded div3 locus (vr x) (vr y)))

attempting to move assertPos (var y) beyond the binder for y, the type checker
reports a problem

Could not deduce (Extends (IO ◦ (( i ◦ j ) ◦ j1 )) (IO ◦ (i ◦ j )))
arising from a use of ’ vr ’

In the third argument of ’ guarded div3’, namely ’(vr y)’

telling us that we have attempted to move y to a smaller binding environment.
In other words, the y binding leaks. Scope extrusion indeed becomes a type
error. (The generated code is shown in full as regression tests of the generators,
in the code accompanying the article. The file Anaphora.hs includes other
examples of code motion with mutable cells.)

The example is simplistic but extensible, all the way to code generation with
constraints (supercompilation). The locus, describing where the assertion is to
be inserted, could be bundled with the bound variable in a new data structure,
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so that it does not have to be passed around separately. Alternatively, one could
use a form of dynamic binding, which could be implemented via the continuation
monad as the generating applicative. Code generation with continuations is
described in §2.5.

2.4. Generating let

When we first introduced the library in §2, we used the type repr Int for an
expression that will produce an integer-valued target code. We have just seen
that to ensure the absence of scope extrusion in the presence of effects such as
mutation, we have to use the more complex type i (repr Int) for target code, with
the applicative i standing for the type environment describing free variables in
the target code. Such an explicit marking of target code types with the type
environment can cause problems when generating code with arbitrarily many
new variables, whose number is determined only at run-time. What should be
the type environment annotation if even the number of free variables in it is not
statically known? This is indeed the show-stopper for some stage calculi, e.g.,
[25]. This section demonstrates that our library has sufficient type-environment
polymorphism to express generators that introduce arbitrarily many new vari-
ables. The polymorphism does not impose high cost: writing such generators
is no more complex than writing polymorphically recursive functions, which
are well-supported in Haskell (and, recently, in OCaml). This section also in-
troduces let-statements to express sharing in the generated code; combining
sharing with code motion is the subject of the next section.

Our running example, introduced in [26], is determining the n-th element
of a Fibonacci-like sequence with the user-specified first two elements. To be
precise, the goal is to build the efficient code that takes the first two elements
and returns the n-th element, for the statically known n. The generator is to do
IO (this time, to print the trace of generating addition, to demonstrate that the
number of additions is linear in n). Getting a bit ahead we note that despite
the apparent triviality, the example could not be implemented before with the
same static guarantees: some frameworks permit effectful generators but not
the statically unknown number of free variables; some others have environment
polymorphism but no effects.

The generator that computes the n-th element of the Fibonacci-like sequence
can be written simply and purely:

gib :: repr Int → repr Int → Int → repr Int
gib x y 0 = x
gib x y 1 = y
gib x y n = gib y (( addS 8appS8 x) 8 appS8 y) (n−1)

To print the trace of additions we insert the tracing version of the addition gener-
ator addt from §2.2. The inferred signature reflects the effectful code generation
(in the applicative IO ◦ i):

gib :: (IO ◦ i ) (repr Int ) → (IO ◦ i ) (repr Int ) → Int → (IO ◦ i ) (repr Int )
gib x y 0 = x
gib x y 1 = y
gib x y n = gib y (addt x y) (n−1)
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gibn n = lam (\x → lam (\y → gib (vr x) (vr y) n))
−− \x → \y → (y +(x +y)) + ((x +y) + (y + (x +y)))

Evaluating gibn 5 prints “generating add” seven times rather than the expected
four. The generated code shown in the comments has lots of duplication: x+y
appears three times. When we first invoke gib (vr x) (vr y) 5, the second ar-
gument is the code for a simple variable. On the recursive invocation, that
argument is the code for adding x and y. This complex expression is incorpo-
rated into further generated code, leading to duplication. The resulting code
becomes exponentially larger and slower with n. To overcome this serious perfor-
mance problem, we should avoid repeated copying (i.e., inlining) the expression
x+y; rather, we should arrange for evaluating x+y only once, and then share its
result.

Our library in Figure 1 provides the primitive generator of let-expressions in
the target code, and the effectful generator let , whose two arguments generate
the expression to share, and the let-body. Whereas the generator using Haskell’s
let

let x = int 1 +: int 2 in x ∗: x
−− (1 +2) ∗ (1 +2)

yields the code (shown underneath in the comments) with the obvious code
duplication, the generator producing the target-code let

let (int 1 +: int 2) $ \x → var x ∗: var x
−− let z 0 = 1 +2 in z 0 ∗ z 0

shares the result of the addition without re-computing it. The code generation
for the addition also happens once in the latter case and twice in the former
case (which is noticeable if the addition generator is effectful, e.g., printing a
trace message).

If we add let in the last clause of gib to share the result of adding x and y
gib :: (IO ◦ i ) (repr Int ) → (IO ◦ i ) (repr Int ) → Int → (IO ◦ i ) (repr Int )
gib x y 0 = x
gib x y 1 = y
gib x y n = let (addt x y) $ \z → gib (weaken y) (var z) (n−1)

the trace of gibn 5 tells that only four additions are generated, as expected. The
resulting code, in the A-normal form,
\x 0 → \x 1 →
let z 2 = x 0 +x 1 in
let z 3 = x 1 +z 2 in
let z 4 = z 2 +z 3 in
let z 5 = z 3 +z 4 in z 5

exhibits no duplication. The simplicity of just adding let seems magical. The
example is indeed less trivial than it appears to be. Let’s examine the evaluation
of gibn 5 step-by-step. First, the expression reduces to gib (vr x) (vr y) 5 :: (IO ◦ i) (repr Int)
where the applicative i stands for the type environment containing the variables
x and y. That expression in turn reduces to

let (addt (vr x) (vr y)) $ \z → gib (weaken (vr y)) (var z) (n−1)

The let generator introduces a new free target variable z and generates the let-
expression binding z to x+y. That free variable is passed to the generator of the
let-expression body, which in our case recursively invokes gib. Therefore, the
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type of gib (weaken (vr y)) (var z) (n−1) is now (IO ◦ (i ◦ j)) (repr Int) where j is
the new applicative representing the type environment containing the introduced
variable z. To type check gib therefore we first need environment polymorphism:
a way to describe the type environment with arbitrarily many free variables. Sec-
ond, we need polymorphic recursion, a way to recursively invoke a polymorphic
function at a different type. Our library has both necessary features. Recall
that (i ◦ j) in the above gib type stands for the original type environment of
gib extended with the binding for z; the latter is described by the applicative
j. Also recall that if i and j are applicatives their composition i ◦ j is itself an
applicative and so the type (IO ◦ (i ◦ j)) (repr Int) of the recursive invocation of
gib is an instance of the polymorphic type ∀i. Applicative i ⇒ (IO ◦ i) (repr Int).
Thus the applicative i reflects the progressively richer type environment. Poly-
morphic recursion has been available in Haskell since Haskell98. Because of the
polymorphic recursion, the type signature of gib is no longer optional.

We have just seen the generation of the statically unknown number of let-
expressions and hence of the statically unknown number of new variables, while
using effects. Such code generators statically assuring well-scoped and well-
typed result code have not been demonstrated before. The effect of code gen-
erators has been simple – printing a trace message. We now turn to a more
serious effect to combine generating let-expressions with code motion.

2.5. Inserting let across binders

We have seen the examples of what looked like ‘patching-up’ the already
generated code, to insert assertions (whose contents are determined after the
generation is complete). One may view such patching-up as code motion. The
ultimate, and the most difficult task is inserting not just assert statements but
binding forms such as let and loop statements – moving not just open code but
binders. We describe let-insertion now and loop-insertion in the next section.

The significance of let-insertion, as we have just seen, is generating code
with the explicit sharing of the result of a sub-expression, eliminating code
duplication. If the target code is imperative, controlling code duplication is not
only desirable but necessary. For that reason, let-insertion is used extensively
in partial evaluation, staging [26] and other meta-programming. The paper [22]
argued for the need to let-insert across binders and posed several such cases as
open problems. We now demonstrate the solution, with well-scopedness safety
guarantees.

Just like the assert statements, we often wish to insert let in an earlier part
of the code, to accomplish what is called an invariant code motion (moving
code out of the loop or a function). Inserting let is significantly more complex
than inserting assert. Recall from §2.3 that assert (x>0) body appearing in the
generated code was produced not in the straightforward way by first generating
the condition x>0 and then generating body. Rather, we started by generating
body and in the process we discovered the need to assert that x is positive.
Hence the code for x>0 was produced as we were generating the body. Let-
insertion, generating let z= exp in body, follows the similar pattern: we start by
generating body, discover an exp to share, insert the let-expression and continue
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type CPSA w m a −− abstract
instance Applicative (CPSA w m)

runCPSA :: CPSA a m a → m a
runJCPSA :: (CPSA (i a) m ◦ i ) a → (m ◦ i ) a
runJCPSA = J ◦ runCPSA ◦ unJ

resetJ :: (CPSA (i a) m ◦ i ) a → (CPSA w m ◦ i) a

genlet :: (CPSA (i0 (repr a)) m ◦ i0 ) (repr a) →
(CPSA (i0 (repr w)) m ◦ i ) (repr a)

−− growing the hierarchy
liftCA :: m a → CPSA w m a
liftJA :: (m ◦ j ) a → (CPSA w m ◦ j) a

Figure 4: The interface for let-insertion

generating of the body. However, we seemingly cannot start generating body
before exp is known: without exp the binder cannot be generated, thus z that
may appear in body does not yet exist. The answer to the quandary was found in
partial evaluation community long time ago: writing the code or the generator
in the continuation-passing style (CPS) [27] (for the detailed explanation, see [4,
Section 3.1]) – or else using control operators [28]. Alas, the ordinary CPS [18]
cannot be used for let-insertion beyond binders (that is, cannot be used for the
invariant code motion) [22]. Our library provides a new CPS hierarchy, called
CPSA, which is applicative rather than monadic. It lets us implement, in the file
TSCPST.hs, the let-insertion interface shown in Figure 4. The implementation
is outside the core of our library, relying only on the interface of Figure 1 but
not on any details of its implementation.

The interface defines an applicative CPSA w m where w is the answer type
and m is a (base) applicative. The latter can be Identity, IO, or another
CPSA w’ m’. Thus CPSA may be iterated, giving us a hierarchy and the possi-
bility of let-insertion beyond many bindings. The combinator for let-insertion
itself is called genlet. It receives an expression to let-bind and evaluates to the
let-bound variable. The place to insert the let form is marked by resetJ. An
example should make it clear:

resetJ $ lam (\x → var x +: genlet (int 2 +: int 3))
−− let z 0 = 2 +3 in
−− \x 1 → x 1 +z 0

with the generated code shown in comments. The let-expression indeed occurs
outside the generated function: we have moved the expression 2+3, which does
not depend on the function’s argument, outside the function’s body. The let-
insertion point may be arbitrarily many binders away from the genlet expression:

resetJ $ lam (\x → lam (\y →
var y +: weaken(var x) +: genlet (int 2 +: int 3)))
−− let z 0 = 2 +3 in
−− \x 1 → \x 2 → (x 2 +x 1) +z 0

The right-hand-side of the binder may contain variables; that is, we may let-
bind open code. Here the type-checker watches that we do not move such
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open expressions too far. For example, the following code attempts to let-bind
var x +: int 3 at the place marked by resetJ, which is outside the x’s binder.

resetJ $ lam (\x →
(lam (\y → var y +: weaken (var x) +:

genlet (var x +: int 3))))

Expected type: i0 (repr0 Int )
Actual type: (◦ ) i0 j (repr0 Int )

In the first argument of 8 var’, namely 8x’
In the first argument of 8 genlet ’, namely 8(var x +: int 3)’

The type checker reports the error, pointing out the binder whose variable es-
capes (attempted to be smuggled to a shorter environment, without j). We must
move the insertion point within that binder, moving the resetJ:

lam (\x →
resetJ (lam (\y → var y +: weaken (var x) +:

genlet (var x +: int 3))))
−− \x 0 → let z 1 = x 0 +3 in
−− \x 2 → (x 2 +x 0) +z 1

One may use several genlet expressions and even nest them:
lam (\x → resetJ (lam (\y →

int 1 +: genlet (var x +: genlet (int 3 +: int 4))
+: genlet (int 5 +: int 6))))

−− \x 0 → let z 1 = let z 1 = 3 +4 in
−− x 0 +z 1 in
−− let z 2 = 5 +6 in
−− \x 3 → (1 +z 1) +z 2

The result is not quite satisfactory: since one of the let-bound expressions con-
tains the variable x, we must insert resetJ under the binder for x, marking the
let-insertion point for all genlet. Whereas genlet (var x +: ...) truly cannot be
inserted any further without scope extrusion, (int 5 +: int 6) is closed and can
be let-bound outside of the outer lam (\x→ ...).

To permit multiple let-insertion at multiple points, we have to use the CPSA
hierarchy, with the applicative CPSA w (CPSA (i0 (repr w1)) m). The nested
CPSA lets different genlet move to different places. We only need to indicate
which genlet goes to which place using liftJA, which may be used repeatedly
(the more liftJA combinators, the wider the scope of the corresponding genlet):

lam (\x → resetJ (lam (\y →
int 1 +: genlet (var x +:

(liftJA $ genlet (int 3 +: int 4)))
+: (liftJA $ genlet (int 5 +: int 6)))))

−− let z 0 = 3 +4 in
−− let z 1 = 5 +6 in
−− \x 2 → let z 3 = x 2 +z 0 in
−− \x 4 → (1 +z 3) +z 1

We have demonstrated generating code in which different let-bound expres-
sions are moved to different places, as far as possible, crossing an arbitrary
number of target code binders, including the binders introduced by the earlier
genlet.
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2.6. Loop tiling

This section presents the case study of using our library for common high-
performance computing loop optimizations: strip mining, loop interchange and
loop tiling. Performing loop interchange with static assurances of well-typedness
and well-scopedness of the generated code was posed as an open problem by
Cohen in [5]. This section presents the first solution.

Our running example is matrix-vector multiplication7: multiplying the ma-
trix a with n rows and m columns by the vector v with the result in the vector
v’.

v′i =
∑
j

aijvj

The standard Haskell implementation of the textbook code is as follows (see the
complete code in the file TSLoop.hs).

mvmul textbook n m a v v’ = vec clear n v’ �
forM [0,1.. m−1] (\j →
forM [0,1.. n−1] (\i →
vec addto v’ i =�

mat get a i j ∗ vec get v j ))

The operations vec get and mat get retrieve a vector/matrix element by its
index. We assume that n is much greater than m. Once a00 is accessed, memory
loads the whole cache line, that is, elements a00 through a07 (with the cache
line 8*8 bytes). Alas, by the time the algorithm needs a01, at the next major
iteration, it will be already evicted. So mvmul textbook performs poorly since
it fails to take advantage of the memory bandwidth’s bringing in several array
elements at a time. A tiled program handles the array one chunk (of size b) at
a time.

mvmul tiled b n m a v v’ = vec clear n v’ �
forM [0, b.. m−1] (\jj →
forM [0, b.. n−1] (\ii →
forM [ jj , jj +1..min (jj +b−1) (m−1)] (\j →
forM [ ii , ii +1..min (ii +b−1) (n−1)] (\i →
vec addto v’ i =�

mat get a i j ∗ vec get v j ))))

Since a tile is small enough, the element a01, brought along with the requested
a00, will not be evicted when it is needed at the j = 1 iteration. Tiling improves
spacial locality, and is one of the basic optimizations in high-performance com-
puting. It is not a general-purpose optimization since it heavily relied on the
fact the evaluations of loop bodies are uncorrelated. Tiling is converting each i
and j loop into a nested pair of loops, followed by loop interchange, pulling the
ii loop right after the jj loop. The body of the loops remains exactly the same
as before; it is executed the same number of times – but in a different pattern.

The tiled code looks more complex; it is easy to make a mistake when tiling
by hand. We need automation. We need automation even more when we will

7Matrix-matrix multiplication benefits more from loop tiling, but it is less suitable for
exposition.
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be combining loop tiling with scalar promotion, partial unrolling and other
optimizations. Our task thus is to generate ordinary and tiled loop nests in a
modular way.

The starting point is converting mvmul textbook to a generator:
mvmul0 n m a v v’ = vec clear (int n) v’ � :
loop (int 0) (int (m−1)) (int 1) (lam $ \j →
loop (int 0) (int (n−1)) (int 1) (lam $ \i →
vec addto (weakens v’) (vr i ) =� :

(mat get (weakens a) (vr i ) (vr j ) 8 mulM8

vec get (weakens v) (vr j ))))

The code is the straightforward staging of mvmul textbook assuming for a bit
of simplicity that the dimensions n and m are known statically. It clearly cor-
responds to the textbook code and seems ‘obviously’ correct. Here mat get
and vec get are the generators of matrix/vector indexing operations. There
may be several implementations for loop, the generator of a loop with the
given lower and upper bounds and the step. The straightforward one generates
forM [lb,lb+step..ub], which gives back mvmul textbook. The second implemen-
tation does the so-called ‘strip mining’, striping a loop into blocks and hence
converting a single loop into two, iterating over blocks (by the statically known
factor b) and then within a block:

loop nested :: Int → Int→ Int→ (m ◦ i) (repr (Int → IO ()))
→ (m ◦ i ) (repr (IO ()))

loop nested b lb ub body =
loop (int lb ) (int ub) (int b) (lam $ \ii →
loop (var ii ) (min (var ii +: int (b−1)) (int ub)) (int 1)
(weakens body))

This generator is written once and for all, in terms of the primitive loop, by a
domain expert, and put in a library. If we just replace loop with loop nested b
in mvmul0, keeping everything else the same, we obtain a potentially faster,
strip-mined code.

Yet another implementation of the loop generator is to split a loop in two,
as in strip mining, and hoist the first loop. The only change to loop nested is
insloop, which, like genlet from §2.5, inserts the loop at some position, to be
indicated by resetJ.

loop nested exch b lb ub body =
let (insloop (int lb ) (int ub) (int b)) (\ii →
loop (var ii ) (min (var ii +: int (b−1)) (int ub)) (int 1)
(weakens body))

Using loop nested exch instead of loop in mvmul0 with resetJ at the top – but
keeping exactly the same loop body – results in the generation of the tiled loop
code just like mvmul tiled. (See the accompanying code for the full details.)
Truly, tiling is strip mining with the loop interchange.

We have demonstrated the step-wise development of the optimized iterative
code. We write the loop body once, and apply various transformations (strip-
mining, tiling, etc) many times. In particular, we interchange loop bodies,
moving open code with binders across other binders.
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3. Implementation

This section outlines the implementation of the interface in Figure 1. The
full implementation is in the file TSCore.hs in the accompanying code.

The two representations of the target code, the data types R and C are as
follows:

newtype R a = R{unR :: a}
newtype C a = C{unC :: VarCounter → Language.Haskell.TH.Exp}

R is just the identity functor; C represents the target code as a Haskell AST, as
reflected in the TH.Exp data type (VarCounter is used internally for generating
fresh names). Making R and C instances of SSym, LamPure, SymLet, etc. is
simple; see the exposition of the tagless-final approach [9] for detailed discussion.

The C-representation, unlike R, denotes the truly future-stage code, to be
compiled later. The code is represented as an untyped Template Haskell TH.Exp.
Nevertheless, the C-representation itself is typed (extrinsically). A generator
polymorphic over repr, such as exS1 in §2, abstracts the differences between R
and C, ensuring at the same time that the generated code is well-typed [9] since
R can generate only well-typed ‘code’.

We now describe the main ideas behind the implementation of two partic-
ularly challenging parts of our library: lam (and the similar let ) generator of
binding forms that permit arbitrary effects while ensuring a well-scoped result;
and the CPSA hierarchy for let-insertion across binders.

3.1. Challenges of generating binding forms with effects

Before showing the implementation of lam, we explain why it has such a
complex and strange type. Recall that the primitive generator of abstractions
lamS from §2.1

lamS :: (repr a → repr b) → repr (a→ b)

permitted no effects during code generation. To accommodate effects, the type
should, at first blush, be

lamM :: (repr a → m (repr b)) → m (repr (a→ b))

Such a generator has two problems. First, it cannot be written in terms of lamS.
Every attempt

lamM body = ... lamS (\x → body x)

runs into the stumbling block: body must be applied to a value of the type repr a
whose only source is x passed by lamS to its argument. However, lamS expects
that argument to return repr b rather than m (repr b). The second problem with
lamM is allowing us to write the code with scope extrusion

badM = do
r ← newIORef (intS 0)
lamM $ \x → do

writeIORef r x
return (addS (intS 1) x)

readIORef r

resulting in an unbound variable. The first problem of lamM may seem minor.
It is however symptomatic: lamS is the generator of abstractions in the target
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language, assuring by construction the well-scoped and closed resulting code.
Not being able to use lamS is ominous.

Let us again look at lamS and the example exS2 of its use from §2.1:
lamS :: (repr a → repr b) → repr (a→ b)
exS2 = lamS(\x → lamS (\y → addS 8appS8 x 8appS8 y))

Haskell variables x and y represent free variables in the target code, of the type
repr Int. The result of exS2 is closed code, of the type repr (Int→ Int→ Int).
Clearly, the code type does not tell whether the target code is closed. Nev-
ertheless, effect-free generators like exS2 guarantee the well-scoped and closed
result, because of the strict region discipline of lamS-bound variables. A free
variable introduced by lamS is manipulated only within the dynamic extent of
that lamS. Haskell dynamic environment (of lamS invocations) stands for the
target type environment.

Effects break the correspondence between the dynamic environment of lamS
and the target type environment by letting bound variables escape the dynamic
scope of their binders, as badM clearly shows. We have to differentiate open and
closed code in their types, to give the type checker enough information to detect
scope extrusion and to re-enforce the region discipline. We have to annotate
the type of a code value with free variables that may appear in it. We have to
make the target type environment explicit in the code type.

The environment (Reader) monad immediately springs to mind: the type of
a potentially open target code would be γ → repr a, where the tuple γ describes
the types of free variables in the code. Closed code is typed as ()→ repr a.
The generator of abstractions with the explicit environment types can then be
written as follows:

lamH :: ((( γ,repr a) → repr a) → ((γ,repr a) → repr b))
→ (γ → repr (a→ b))

lamH body = \γ → lamS (\x → (body var)(γ,x))
where var = \ (γ,x) → x

The variables are hence identified by their offsets in the tuple: De Bruijn in-
dices essentially. The user of our library is spared, however, from programming
with the indices because lamH provides and names a function to project a vari-
able from the environment. The generator lamH still operates without effects.
However, it is expressed in terms of lamS, and it generalizes to effects.

Introducing generation-time effects becomes straightforward: a generator
yielding a potentially open code and performing side-effects in the monad m
gets the type m (γ→ repr a). In particular, the generator of target abstractions
can be written as

lamE :: Functor m ⇒ (((γ,repr a) → repr a) → m ((γ,repr a) → repr b))
→ m (γ → repr (a→ b))

lamE body = fmap (\body’ γ→ lamS (\x → body’ (γ,x))) (body var)
where var = \ (γ,x) → x

It is written in terms of lamS as desired. The lamE code and its type signature
desperately call for abstraction. Exposing the representation of the environment
as the nested tuple makes it ripe for abuse, e.g., letting the programmer examine
the environment and modify it at will and hence break any well-scopedness
guarantees (see §4.1 for examples).
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The hint at a better abstraction comes from the type of lamE, which needs
m to be a mere Functor. The second hint comes from examining the type of
effectful generators, m (γ→ repr a), which looks like the composition of m and
the Reader monad (γ→ ) applied to repr a. Alas, the composition of two monads
is not a monad in general. Although the Reader monad (γ→ ) is a ‘benign’ effect,
the composition m ◦ (γ→ ) with an arbitrary monad m is not a monad. The
reader is encouraged to try to write (�= ) for m ◦ (γ→ ) to see why this is not
possible.

However, any monad is an applicative, and applicatives are closed under com-
position. Hence m ◦ (γ→ ), and generally m ◦ (t1 → ) ◦ (t2 → ) ... ◦ (tn → ),
are all applicatives. This fact leads to the final representation for the code
type: i (repr a) is the type of the generator that produces potentially open code
and has some effects. Effects and the typing environment are both hidden, ab-
stracted away by the applicative i. The generator for the target abstraction is
written as follows8:

lam :: Applicative i ⇒
(∀ j . Applicative j ⇒ j (repr a) → (i ◦ j ) (repr b)) →
i (repr (a→ b))

lam body = fmap’ lamS (body var)
where var = \x → x −− j is the Reader applicative

fmap’ :: (j a → b) → (i ◦ j ) a → i b

The implementation chooses the Applicative j to be the Reader applicative (repr a→ ) –
however, the generator body for the body of the abstraction is not allowed, by
the quantification over j, to know what j really is. (The reason for the quantifi-
cation will become clear in §4.) All the body knows is that it receives the value
of the type j (repr a) that somehow represents the bound variable and it should
produce the abstraction’s body of the type (i ◦ j) (repr b), in the applicative
(i ◦ j), possibly performing effects denoted by i and using free variables that are
somehow bound in i. The detailed structure of the type environment is hidden.

Thanks to the abstraction, of the target code binder lamS and of the environ-
ment and effects, the code of lam is exceptionally simple. The implementation
of let is similar. The implementation of fmap’ above and of var and weaken in
Figure 1 follows from the Applicative laws.

3.2. Challenges of let-insertion

We now describe how the representation of the target code with the explicit
type environment makes let-insertion very difficult.

Recall that let-insertion, §2.5, is introducing let-binding forms in the gener-
ated code; specifically, making sure that marked sub-expressions are let-bound
in the resulting code. The following is a typical example:

li e = lam (\x → var x +: genlet e)
tli = lam (\y → resetJ $ li (var y +: int 1))
−− \y → let z = y+1 in (\x → x+z)

8The real type of lam, shown in Figure 1, is more elaborate, for the sake of let-insertion,
§3.2.
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with the generated code shown in the comments. The combinator genlet (see
Figure 4) ‘marks’ an expression for let-bindings, and resetJ marks the place
where to insert that let-binding.

Just accomplishing the let-insertion regardless of typing is a challenge in
itself, as we have seen in §2.5. That section mentioned that the solution, well-
known in the partial evaluation community, involves continuation-passing style
or delimited control operators. We can program that solution as follows, using
the standard CPS monad and the combinator let S for generating let-expressions
in the target code.

type CPS w a = (a → w) → w
runCPS :: CPS a a → a
runCPS m = m id

reset :: CPS a a → CPS w a
reset m = \k → k (runCPS m)

genlet simple :: CPS (repr a) (repr a) → CPS (repr w) (repr a)
genlet simple e = \k → let S (runCPS e) (\z → k z)

The sample generator below yields the code shown in the comments
reset $ int 1 +: genlet simple (int 2 +: int 3)
−− let z 0 = 2+3 in 1 +z 0

The combinator genlet simple is too simple. For one, it cannot insert let
across the binders. For example, we cannot use it in place of genlet in the
expression li above. In order to be used in li, the let-insertion combinator should
at least have the type

(CPS (i (repr w)) ◦ i ) (repr a) → (CPS (i (repr w)) ◦ (i ◦ j )) (repr a)

reflecting the fact that the expression e in genlet e is a potentially open ex-
pression, whose type environment is described by the applicative i (in the
example tli, the function li does receive the open expression (var y +: int 1)
as the argument). It is a challenge to make our genlet simple to conform
to the above type. Instead of let S we need a let-generator of the type like
i (repr a) → ((repr a) → i (repr w)) → i (repr w). The problem now looks quite
like the one with lamS in §3.1, which we solved by introducing lam, the effectful
generator of abstractions. The same approach produces let for let-insertion
in the presence of effects. If we could use let instead of let S in the defini-
tion of genlet simple, we solve the current problem and also the second one:
genlet simple does not work for tracing, using mutable state or other effects
beside the control effect for let-insertion.

Alas, it is not that simple. It is exasperating to generalize genlet simple from
repr a to the more detailed type of code values i (repr a). The straightforward
attempt

genlet0 e = \k → runCPS $ let e (\z → k (var z))

fails to type check, because z ostensibly leaks out from the scope of let . Indeed,
if e :: i (repr a), the type of z must be (i ◦ j’) (repr a) where j’ represents the new
binding entered by let . To prevent the scope extrusion (see §4), j’ is universally
quantified within let . Since z is passed to the continuation k, the type of z is
part of the type of genlet0, and hence the quantified variable j’ escapes.
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The real reason for the type-checking failure of genlet0 may be understood
as follows. Consider again the typical example:

li e = lam (\x → var x +: genlet e)
tli = lam (\y → resetJ $ li (var y +: int 1))

The function li is invoked with the open expression of the type i (repr a) where i
represents the type environment with the binding for y. The expression genlet e
then has the type (i ◦ j) (repr a) in the extended type environment that also
includes the binding for x. The continuation k, see genlet0 code, should there-
fore receive the argument of that type. On the other hand, if e:: i (repr a) in
let e (\z → k (var z)) then the continuation k receives the argument of the type
(i ◦ j’) (repr a) where j’ stands for the type environment of the variable z. Since
z and x are not related, j and j’ are distinct and cannot be reconciled. What
makes let-insertion so complex is that the type environment is extended in such
a non-linear way.

The solution is quite involved, see the file TSCPST.hs. It introduces a new
CPS hierarchy, called CPSA, with the applicative CPS transformer of a rank-3
type. The type is very complex; a good way to understand it is as a specialization
of the following

newtype CPSA2 w m a =
CPSA2 (∀ m1. Extends m m1 ⇒

(∀ m2. Extends m1 m2 ⇒ m2 a → m2 w) → m1 w)

If we set m1 and m2 to be the same as m, we obtain the standard CPS applicative
newtype CPSA0 w m a = CPSA0 ((m a → m w) → m w)

which is only useful for let-insertion outside any lambda-expressions. To place
the inserted let-statement within the body of a generated function, we have to
account for the fact that the binding environment at that point is richer than
the base m (e.g., the Identity) applicative. Therefore, we should define

newtype CPSA1 w m a =
CPSA1(∀ m1. Extends m m1 ⇒ (m1 a → m1 w) → m1 w)

This applicative assumes that the captured continuation m1 a → m1 w has the
same binding environment, represented by m1, as that of the inserted let. To
insert let across the binders, we inevitably come to the rank-3 CPSA2.

To make CPSA2 an instance of Applicative we need the transitivity of Extends,
which is very difficult to express in Haskell. Therefore, the real CPSA type is
the specialization of CPSA2:

newtype CPSA w m a =
CPSA{unCPSA ::

∀ hw. AppLiftable hw ⇒
(∀ h. AppLiftable h ⇒
(( m ◦ hw) ◦ h) a → (( m ◦ hw) ◦ h) w)
→ (m ◦ hw) w}

Recall, from Fig. 2 that AppLiftable is an Applicative with the additional law that
lets us change the order in the composition of applicatives, hence supporting
the familiar exchange rule for the components of type environments. AppLiftable
applicatives are also closed under composition. One may view AppLiftable as
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both an Applicative and a so-called Distributive functor9.
Since the parameter m can be instantiated to be CPSA w’ m’ again, CPSA

generates the hierarchy. Unlike that of Danvy-Filinski [18], ours is applicative
but not monadic. Before looking at the code, the reader is encouraged to write
an applicative instance for CPSA w m as an exercise. Only by trying this exercise
one can truly understand this complex type.

4. Safety properties

This section details static assurances of our generators and gives informal
justification. Formal justification is quite involved: the related [29] gives a taste.
It is the subject of another paper.

Our library relies on the tagless-final [9] representation of the target lan-
guage (which is a simply-typed subset of Haskell, presently). Since the encoding
is tight, we have

Proposition 1. Every value of the type ∀repr. (SSym repr, LamPure repr, ...) ⇒ repr a
in an environment xi : repr ai, . . . denotes a well-typed target term of the type a
in a target-language type environment xi : ai, . . ..

It immediately follows, by the type soundness of Haskell, that every code value
produced by a well-typed Haskell program denotes a well-typed target term.
Our library statically ensures well-typedness even for parts of the generated
code, not only for the entire generated program.

Our effectful generators explicitly carry the target-language type environ-
ment: by design, an effectful generator of the type (m ◦ i) (repr a) (omitting
the constraints on the type variables per our convention), if it successfully ter-
minates, produces potentially open target code, whose free variables are in the
type environment represented by the applicative i. The ‘run’ functions such as
runC in Figure 1 set i to be the Identity, corresponding to the null environment.
It follows that

Proposition 2. The code value produced by the functions runR and runC rep-
resents closed target code.

Thus our Haskell generators produce well-typed code without unbound vari-
ables. The property is relatively weak: if e is a faulty generator that attempts
to produce code with unbound variables, the type error will be emitted only
upon type-checking the runC e expression. Our library has a stronger property,
maintaining well-scopedness at all times and making such e ill-typed. More
importantly, our library statically prevents generation of the code with acciden-
tally bound variables. The notion of well-scopedness is subtle; the next section
explains.

9See the package distributive on Hackage.
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4.1. Examples of breaking lexical scope

Guaranteeing the generation of well-typed and closed code is not enough
however. The generated code may be closed, but its bindings could be ‘mixed-
up’ or ‘unexpected’. It is a quite subtle problem to define what it means exactly
to generate code with expected bindings; the literature, which we review in this
section, relies on negative examples, of intuitively wrong binding or violations
of lexical scope.

As the first example of intuitively wrong behavior we use the one from [30,
Section 3.3]. The example, unfortunately admitted in the system of [30], exhibits
the problem that bindings “vanish or occur ‘unexpectedly’ ”. The example can
be translated to our library, but only if we break it:

exCX f = unsafeLam(\y → unsafeLam (\x → f (var x)))

here unsafeLam is the unsafe version of the lam generator for building target
code functions – without the higher-rank type (without the ∀j). We introduce
unsafeLam for the sake of this problematic example, because otherwise, happily,
it will not type check. We may apply exCX to different functions, obtaining the
code shown in the comments beneath the generator:

exCX c1 = exCX id
−− \x 0 → \x 1 → x 1

permute env :: (m ◦ (( i ◦ j1 ) ◦ j2 )) a → (m ◦ (( i ◦ j2 ) ◦ j1 )) a
exCX c2 = exCX permute env
−− \x 0 → \x 1 → x 0

The binding structure of the generated code depends on the argument passed to
exCX. Thus scope is not lexical in the sense that the mapping between binding
and reference occurrences of variables cannot be determined just by looking
at the code for exCX or its type. Speaking of the type, here is the inferred
type of exCX (omitting the constraints per our convention and abbreviating
(→ ) (repr a) to j1 and (→ ) (repr b) to j2):

exCX :: (( m ◦ (( i ◦ j1 ) ◦ j2 )) (repr b) → (m ◦ ((i ◦ j1 ) ◦ j2 )) (repr c))
→ (m ◦ i) (repr (a → b → c))

The type says that the argument of exCX maps the target code valid in the
environment with at least two slots, j1 and j2, into the target code in the same
environment – or in the environment of the same structure. If the type vari-
ables a and b happen to be instantiated to the same type (Int in exCX c1 and
exCX c2), j1 and j2 become the same and so exchanging these slots in the type
environment preserves its structure. That is why exCX c2 above was accepted.
If the type environment is just a sequence and variables are identified by the
offsets in the sequence, swapping two elements in the environment preserves the
property that each free variable in a term corresponds to a slot in the envi-
ronment. Alas, swapping changes the mapping between the variable references
and the slots. If the type system of the staged language enforces merely the
well-formedness property that each free variable in the target code should cor-
respond to some slot in the (explicit) target environment, we lose lexical scoping
for the generated code. We cannot statically tell the correspondence between
binding and reference occurrences of target variables. We thus give further,
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clearer evidence for the argument of Pouillard and Pottier [31] that well-scoped
De Bruijn indices do not per se ensure that the variable names are handled “in
a sound way.” (The system of Chen and Xi [30] used raw De Bruijn indices for
variables; therefore, they could demonstrate the problem by choosing f to be
either the identity or the De Bruijn shifting function. In our system, a variable
reference is a projection from the environment rather than an abstract numeral,
which makes the example a bit more complicated.)

We must stress that without unsafeLam, the problematic example does not
type in our system! If we use our regular lam, the type checker immediately com-
plains of the escaping quantified variable j1. We may try to give the signature
that specifically permits the environment-shuffling f:
−− ill−typed!
exCX4 :: (Applicative m, SSym repr, LamPure repr, AppLiftable i ) ⇒

(∀ j1 j2 . (Applicative j1 , Applicative j2 ) ⇒
(m ◦ (( i ◦ j1 ) ◦ j2 )) (repr b) →
(m ◦ (( i ◦ j2 ) ◦ j1 )) (repr c))
→ (m ◦ i ) (repr (a → b → c))

exCX4 f = lam(\y → lam (\x → f (var x)))

It is rejected by the type checker because of the attempt to identify the j1 associ-
ated with y and the j2 associated with x. These two are independently quantified
and not unifiable. Thus, our library enforces the abstraction of the type envi-
ronment and makes the mapping between bound and reference occurrences of
the variables statically apparent. Since we identify future-stage variables with
quantified type variables j, the scope of future-stage variables is the quantifica-
tion scope of the corresponding j type variables, which is evident from the type.
Present-stage code types tell future-stage variable scopes.

Let us take another example of an effectful code generator, from Kim et al.
[32, §6.4]. Written with our library, it is as follows (see Unsafe.hs for the
complete code for these examples.)

exKYC1 :: (IO ◦ i ) (repr (Int → Int → Int ))
exKYC1 = do

a ← int 1 �= newIORef
f ← unsafeLam (\x → unsafeLam (\y →

(weaken (var x) +: var y) �= writeIORef a � int 2))
g ← unsafeLam (\y → unsafeLam (\z → readIORef a))
return g
−− \x 0 → \x 1 → (+) x 0 x 1

The generator stores the open code (weaken (var x) +: var y) in an outside
reference cell a and inserts the code under the scope of two different abstractions,
in g. Kim et al. argue that a (Lisp) programmer might have expected that
only the variable y is captured by the new abstraction in g; if the programmer
used the system of Chen and Xi [30], then both variables would be captured
(producing the code shown on the comment line). We view this example as
a blatant violation of lexical scope: leaking bound variables from under their
binders, and especially capturing them by different binders, violating hygiene,
is an offense. We can only write exKYC1 if we deliberately break our library;
inserting even one regular, safe lam provokes the ire of the type checker.

We stress again that the two problematic examples will not type with the
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unbroken lam. It is the higher-rank type of lam that is responsible for the
rejection of the generators attempting to produce ill-scoped code. Since the let-
insertion and loop-interchange code is written in terms of lam and the similar
let , their safety follows from the safety properties of the latter.

We may liken the higher-rank type of lam to that of runST in the ST monad
[33]. In fact, our ill-scoped examples are akin to those [33, §2.5.2] of muta-
ble cells created in one state thread escaping or being used in another thread.
Launchbury and Peyton Jones argue how parametricity (which comes from the
universal quantification over the state of the thread – target code type envi-
ronment in our case) prevents bad examples. The analogy with runST helps
us make precise the notion of well-scopedness. Recall that (m ◦ i) (repr a) is a
generator of a potentially open code whose free variables are described by the
type environment denoted by i. The implementation of lam realizes a particular
mapping, ‘coding function’ in the words of Launchbury and Peyton Jones [33],
assigning target-code free variables particular slots in i. The generated code is
well-scoped if using a different coding function will generate α-equivalent code.
The paper [33] outlines an argument based on logical relations to prove the
coding-function independence for their runST threads. We expect that a similar
argument can apply to our case, but its formal treatment is left for another
paper.

5. Related work

5.1. Template Haskell

For generating Haskell code, our library relies on Haskell AST as repre-
sented by Exp data type of Template Haskell (TH). We also rely on TH’s pretty-
printing.

Template Haskell also lets us build code in a much more convenient way,
compared to Exp: using quasiquotation in the spirit of Lisp and MetaML. Tem-
plate Haskell permits effects, including IO, within unquotes, via the so-called Q
monad. Template Haskell does limited and idiosyncratic type checking of under
quasiquotation – and still permits construction of ill-typed code or code with
unbound variables. Like low-level Lisp macros, TH is unhygienic. Therefore,
the completely generated code must be type-checked, at which time code gen-
eration errors become apparent. Alas, the error messages are quite unhelpful,
referring to the generated code, which is often large and hardly comprehensible.
Normally, a generator is made of many components written by separate peo-
ple. Effects can be non-local. When effectful generators produced wrong code
(inserted a binding to a wrong place), it could be quite difficult to figure out
who did it. We aim at the generated code to be well-formed and well-typed
by construction; attempts to generate bad code should be reported when the
generator itself is type-checked.

We must stress that the post-validation approach employed by TH – type
check the generated code before use – does not catch all violations of the lexical
scope. Lexical scope mix-up (accidental capture) may well generate well-formed

34



code – but with unanticipated bindings. The generated code will compile, but
run in an unexpected way, which is very difficult to debug. Thus the TH
approach is not acceptable to us.

As of GHC version 7.8, TH has introduced typed quoted expressions TExp,
which are quite like MetaOCaml brackets, only restricted to two levels, with no
run and no polymorphic lift (although that may be a feature). TExp are type
checked as they are constructed, reporting the errors in terms of the genera-
tor. TExp thus provides the same static assurances as MetaOCaml. Alas, TExp
permits no effects whatsoever during code generation. Therefore, most of the
examples in the present paper – in particular, let-insertion across the binders
§2.5 and loop interchange §2.6 – are not possible with TH’s typed quoted ex-
pressions.

The code-generation library described in the present paper has the same
static guarantees as TExp; in addition, it permits all effects of the built-in Q
monad of TH, including arbitrary IO, plus all other monadic effects. Our library
generates Template Haskell expressions Exp without this monad. The Q monad
therefore does not have to be built-in.

5.2. Why the problem is so difficult

Let us review what makes generating assuredly well-typed and well-scoped
code so difficult in the presence of effects. The source of all problems is gen-
erating abstractions in the target code, which is inherently a two-step process.
First, a free variable is created and the body of the abstraction is produced.
Second, the binding form such as let or lambda, to bind the variable in the gen-
erated body, is built. Scope extrusion occurs when the created fresh variable is
not bound in the second step, by its intended binder. The variable is either left
unbound or, insidiously, is accidentally captured by some other binder. Scope
extrusion thus is an ever-present danger when generating higher-order code.

Scope extrusion may occur even in a pure-functional generator, if the meta-
programming system has a first-class operation to run or print the generated
code (which is typically the case). In our library, such a dangerous code can be
written as

lam (\x → runR x)

In our library, this code does not type-check; the error message essentially de-
scribes the attempt to run an open code. In many other meta-programming
systems such code does type-check; evaluating it causes some sort of a run-
time error (see [30, §1] for examples). “This subtle problem, which seems rather
technical, can lead to serious difficulties in establishing type soundness for typed
meta- programming.” [30]. This is the main reason (related to the general dif-
ficulty of dealing with open terms in higher-order abstract syntax) that Chen
and Xi had to abandon the convenient, ‘clean and elegant’ HOAS.

Scope extrusion when attempting to run an open code (code that we have
not yet finished constructing) is the problem that stimulated the development
of environment classifiers [23]. A classifier, annotating code types, stands for an
open set of free variables of the same stage. Alas, this elegant solution does not
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extend to generators with side-effects: environment classifiers are too coarse-
grained to prevent scope extrusion while still allow effectful manipulation of
open code. The following example, a simplification of assert-insertion in §2.3,
demonstrates the need to precisely annotate code types with the target variables
that may be free in that code.

writeGood = lam (\x →
J $ do

r ← newIORef (int 0)
c ← unJ $ lam (\y → J $ do

writeIORef r $ var x +: int 2
return $ int 1)

z ← readIORef r
unJ $ (var c $$ z)

)

While generating the body for the inner lam, we store open code var x +: int 2
in the reference cell r. The code saved in r is later applied to the generated inner
lam. Such a manipulation of open code is desired, and should be expressible,
and it is in our library: writeGood type checks. However, if we by mistake store
var y +: int 2 in r, the generator should be rejected because the scope extrusion,
of the variable y, will result otherwise. To reject that bad code and still accept
writeGood, the type checker needs to know which target variables are free in
var x +: int 2 and var y +: int 2. The types of the two code expressions must
differ. Alas, the environment classifier frameworks assigns the two code values
the same classifier.

It is inevitable that preventing scope extrusion in the presence of effects
while still permitting manipulations of open code requires as precise as possible
annotations of code types with free target variables. We face then three problems
pointed out in [23, §1.4]: the large size of annotated code types, α-conversion
and environment polymorphism. We have to brace for the size of the code
type being linear in the number of free variables. Maintaining α-equivalence for
(eventually) bound target variables requires avoiding concrete variable names in
type annotations. The need for environment polymorphism is better illustrated
on three progressively more complex examples, extended from the one in [23,
§1.4].

eta f = lam (\x → f (var x))

teta0 = eta (\z → int 1 +: z)
teta1 = lam (\y → eta (\z → z +: vr y))
teta2 = lam (\y → lam (\w → eta (\z → z +: vr y ∗: vr w)))

The generator eta is the two-level η-expansion often used in partial evaluation
community; teta0, teta1, and teta2 are three examples of its use. In teta0, the
argument of eta is a function that increments the received code value; the result
has the same number of free variables. In teta1, the argument of f returns the
code value with an extra free variable, y; in teta2, f extends the environment of
the received code value with two free variables. The type of eta must say that
f is a function that receives open code (variable x) and returns code with any
number of free variables. We now have to make sure all these new free variables
are distinct from x, the one created by eta itself. We review the resulting
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problems later below. The following two extensions of eta demonstrate further
complications:

eta2 f = lam (\x → lam (\y → f (weaken (var x)) (var y)))

etan f 0 = lam (\x → f (var x))
etan f n = lam (\x → etan (\z → f (z +: vr x)) (n−1) $$ (var x))

The type of f in etan should not only specify that it produces a code value with
arbitrarily many free variables. The argument of f is also a code value with an
arbitrary, furthermore, statically unknown, number of free variables. All these
free variables should somehow be kept distinct from the ones f itself adds.

The code type i (repr t) in our library solves the problem. The type en-
vironment of the open code is abstractly represented by an applicative i; the
extended type environment, accounting for a new free variable represented by
j, is the composition i ◦ j, which is itself an applicative. We hence obtain a
way to concisely represent an arbitrarily many free variables. Our library elim-
inates the problems of scope extrusion and makes it possible again to enjoy
clean and elegant higher-order abstract syntax. Below we briefly describe other
approaches for dealing with the problems identified in this section.

5.3. Code generation with effects

The present paper is the last in the line of research on effectful program
generation. The most notable in this line is [34, 35], who developed an off-line
partial evaluator for programs with mutation. Partial evaluator can perform
some of the source code mutations at specialization time, if possible. Such
operations may involve code, including open code. Scope extrusion is prevented
by careful programming of the partial evaluator (followed by a proof). The
partial evaluator is not extensible and is not maintained; if new specializations
are desired, a user has little choice but to thoroughly learn the implementation,
extend it, and redo the correctness proof.

Staged languages attempt to ease the burden, giving the user code-generating
facilities without requiring the user to become a compiler writer. The latter re-
quirement implies that the generated code should be well-formed and well-typed
and free from unbound variables, so the end user should not need to examine it.
Since the unrestricted use of effects quickly leads to the generation of code with
unbound variables, it has been a persistent problem to find the right balance
between the restrictions on effects and expressiveness. So far, that balance has
been tilted away from expressiveness. We can judge the expressiveness by sev-
eral benchmarks: (1) Faulty power §2.1: throwing simple exceptions in code
generators; (2) Gibonacci §2.4: generating an arbitrary, statically unknown
number of bindings; (3) assert-insertion beyond the closest binder, §2.3; (4)
let-insertion beyond the binder, §2.5. Only the present work implements all
four benchmarks; even assert-insertion was not reachable before with statically
assured generators.

We now review in more detail the limitations on expressivity that have been
previously imposed for the sake of static assurances. The work [36] presents a
type-and-effect system for meta-programming with exceptions, allowing excep-
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tion propagation beyond target-code binders. Exceptions are treated as atomic
constants, and cannot include open code. The system permits Faulty power but
not the other benchmark in our suite. [37, 38] permitted mutations but only of
the closed code; the approach cannot therefore implement the assertion-insertion
benchmark.

Mint [21] is a staged imperative language, hence permitting generators with
effects such as mutation and exceptions. Mint does support the Faulty power.
Mint severely restricts the code values that may be stored in mutable variables or
thrown in exceptions, by imposing so-called weak separability. Even closed code
values cannot be stored in reference cells allocated outside a binder. Therefore,
Mint cannot implement the assertion-insertion benchmark .

Swadi et al. [26] and Kameyama et al. [22] described the systems that permit
the use of control effects, and hence mutation, restricting them within a binder:
the generator of a binder is always pure. The first system used continuation-
passing (or, monadic) style, whereas the latter was in direct style. Both systems
implement Gibonacci; neither implements faulty power, although the system [22]
can be trivially extended for that case (imposing the same restrictions on values
thrown from under the binder, as those of Mint). The two systems hit the local
optimum, allowing writing moderately complex generators, e.g., [4].

The parallel line of work [32] (and, in the same spirit, [39]) attempts to
formalize and make safe the practice of generating code with concrete symbolic
names, typical of Lisp. The variable capture is specifically allowed and the
lexical scope of the generated code is not assured statically.

Shifting focus away from well-scopedness and concentrating on expressivity
and improving the end-user productivity is characteristic of the other line of
research. Rompf and Odersky proposed a lightweight approach to staging in
Scala [11], which provides an effective way to generate high-performance code.
Their goals are quite different from ours: they focus on practical issues on code
generation, in particular, how to make the designing, efficiently implementing
and using practical DSLs convenient for the end user. We, on the other hand,
focus on defining and statically assuring well-scopedness.

The language Terra [40] is a multistage language based on Lua. Although
untyped, it assures the absence of unbound variables in the generated code syn-
tactically, by representing any open generated code as a metalanguage function.
This approach does not however prevent generation of code with unexpectedly
bound variables.

5.4. Contextual systems

In our approach, code generators may produce open target code and have
the type that includes the target code typing environment. Moreover, the type
contains the ‘names’, represented by applicatives, for free target variables. The
latter fact in particular relates our work to the contextual modal type theory
[41]. Unlike the latter work, our ‘unquotation’ (which is implicit in the use of
code combinators) is much more concise; we also support some polymorphism
over environments, and thus, modularity. We also never destruct or pattern-
match on code values (see the next section for more discussion). Recording the
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‘names’ of variables in the type of a term also relates our system with record
systems with first-class labels [42]. Unlike them, we do not need negative,
freshness constraints because our labels j are always chosen fresh by the type
checker.

Environment classifiers [23] are an elegant simplification of contextual modal
type theories, which indexes open code and contexts by classifiers that stand
for extensible sets of free variables (rather than variables themselves). Alas,
the classifiers as originally proposed are not precise enough to statically assure
well-scoped generated code in the presence of generator effects. The present
paper may be viewed as the system of environment classifiers with improved
precision.

Rhiger [25] proposed a multi-stage calculus which allows effects in genera-
tors with the static guarantee of type safety. Although simple and elegant, his
calculus lacks polymorphism over environments, which makes it impossible to
implement the examples like those in §2.4 and §5.2.

5.5. Programming with names

The nominal tradition has been extensively reviewed in [31]. Using the lat-
ter’s criteria, our approach can be classified as using explicit contexts, with
‘names’ inhabiting every type (the consequence of HOAS), and no costly primi-
tives. The type system ensures not only that a closed generator generates closed
code, but also that the code generator preserves the lexical scope.

Our approach has many similarities with that of [31], in particular, their
De Bruijn-index implementation. Our environment i is quite like World. The
main difference, which explains the others, is the difference in intended appli-
cations. We are interested in domain-specific languages for code generation.
The programmer building generators from given blocks is not necessarily an
expert in the target language; therefore, keeping the generated code abstract
and non-inspectable is the advantage. It also enables a richer equational theory
(see below). One of the main intended applications for the nominal systems is
writing theorem provers, code verifiers, etc. The ability to inspect, traverse and
transform terms, which may contain bindings, is a must then.

The framework of [31] provides for generating fresh names, comparing them,
and moving them across the worlds. We permit none of that. Our approach is
purely generative: the generated code is a black box and cannot be inspected.
Comparing variables names for equality or computing the set of free variable of a
code value are in principle unimplementable in our approach. The main benefit
of the pure generative restriction is simplicity. The framework of [31] required
the power of dependent types to ensure some of the soundness of dealing with
names and so was implemented in Agda. The remaining invariants were not
expressed and had to be ensured by an off-line proof of the implementation.
Pure FreshML [43], an experimental language, attained the soundness of name
manipulation by introducing a specialized logic and expressing logical assertions
in types, extending the type checking. One can say the same about Delphin
and Beluga [44, 45]. In contrast, we implement our code-generation library
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in ordinary Haskell. Experience showed that pure generative approach, albeit
seemingly restrictive, does not prevent generation of highly optimal code [46, 47].

The main benefit of generative approach is a richer equational theory: as
argued in [48, 49] allowing inspection of the generated code makes the equa-
tional theory trivial. Indeed, if one could compute the set of free variables of a
term, one could distinguish two β-equivalent terms, lam (\x → int 1) $$ var y
and int 1. (Our library has a function to show the code, but its type is not
polymorphic in repr.)

The system of [31] and the other nominal systems reviewed therein do not
specify how and if they permit let-insertion across binders while ensuring lexical
scope.

We should specifically contrast our approach with well-scoped De Bruijn in-
dices [30]. Although the approach ensures that all variables in the generated
code are bound, the binding may be unanticipated, see §4.1. The problem was
indicated in the review of [31], although it has been pointed out by [32] and al-
ready in [30]. Although our representation of target environment by nested ◦ is
reminiscent of the well-scoped De Bruijn-index approach, our use of rank-2 types
for future-stage binders prevents unintended permutations of the environment
or forgetting to add weaken and ensure that ‘variable references’, represented as
projections from the environment, always match their environment slot.

Interestingly, Chen and co-authors [30] gave up on HOAS (which was used
by the authors in [7]) because “In general, it seems rather difficult, if not im-
possible, to manipulate open code in a satisfactory manner when higher-order
code representation is chosen.” Second, HOAS representation makes it possible
to write code that does “free variable evaluation, a.k.a. open code extrusion”.
The authors use De Bruijn indices, however cumbersome they are for practical
programming (which the authors admit and try to sugar out). The sugaring still
presents the problems (reviewed in §4.1). We demonstrate how to solve both
problems, manipulation of open code and prevention of free variable elimination,
without giving up conveniences of HOAS.

5.6. Hygienic macros

The long tradition of code generation, or macros, in Lisp systems has long
pointed out the danger of variable capture and the need to maintain the hygiene
of macro-expansion [50]. Alas, defining what it means precisely has been elusive
[51, 52]. The latter papers argue that a type system for macros is necessary to
define and maintain lexical scope. The macro system of Herman and Wand [51]
is, like ours, purely generative.

6. Conclusions

We have presented the so far most expressive, yet statically safe code gen-
eration approach. It permits arbitrary effects during code generation, including
those that store or move open code. For the first time we demonstrate let-
insertion across an arbitrary number of generated binders and loop interchange
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while statically assuring that the generated code is well-typed and contains no
unbound variables or unexpectedly bound ones. A generator or even a generator
fragment that would violate these assurances is rejected by the type checker.

We have fulfilled the dream of Taha and Nielsen [23]: “that the notion
of classifiers will provide a natural mechanism to allow us to safely store and
communicate open values, which to date has not been possible.” Our approach
is to make classifiers more precise, associating them with each binding rather
than a set of bindings. Classifiers, or quantified type variables, act as names
for free variables; the quantification scopes of these type variables correspond
to the binding scopes of the respective generated variables. In other words, the
generator type tells the scope of generated variables.

Although our approach makes the ‘names’ of free variables apparent in the
types of open code, it avoids the common drawback of context calculi: the
need to state freshness-of-names constraints. They are implicit and enforced
by the type checker. Although our approach exposes target-code binding envi-
ronments in the types of the generator, it permits environment polymorphism
and statically prevents weakening too little or too much. Our approach further
departs from statically scoped De Bruijn indices by permitting human-readable
names for the variables. In fact, our approach vindicates HOAS, which has been
regarded as unsuitable for assured and expressive code generation.

We have implemented the approach as a Haskell library. It may be regarded
as a blueprint for a safe subset of Template Haskell. The approach can be im-
plemented in any other language with first-class polymorphism, such as OCaml.
Our use of mature languages, our guarantee that the generated code compiles,
the human-readable variable names afforded by HOAS, and the generator modu-
larity enabled by environment polymorphism together let domain experts today
implement efficient domain-specific languages.

As for theory, we introduced a novel, applicative CPS hierarchy that does
not treat abstraction as a value, permitting effects to extend past a binder. That
result has many implications, for example, for the analysis of quantifier scope
in linguistics.
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anonymous reviewers for many suggestions. The support of JSPS, under the
Kakenhi grant 25280020, is gratefully acknowledged.

[1] G. Keller, H. Chaffey-Millar, M. M. T. Chakravarty, D. Stewart, C. Barner-
Kowollik, Specialising Simulator Generators for High-Performance Monte-
Carlo Methods, in: PADL, LNCS, 2008.
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