
Axiomatizing Higher Level Delimited Continuation

Yukiyoshi Kameyama
Institute of Information Sciences and Electronics

University of Tsukuba
Tsukuba, Japan

and Japan Science and Technology Agency

kam@is.tsukuba.ac.jp

ABSTRACT
In our previous work we gave a sound and complete axioma-
tization of the control operators for delimited continuations,
shift and reset by Danvy and Filinski and their variants.
Since the calculus allows only one use of shift and reset, a
next step is to investigate the calculus with many different
shift’s and reset’s. In this work, we study the calculus
with higher-level delimited continuation operators, and give
a sound and complete axiomatization of the calculus with
level-1 and level-2 control operators for delimited continua-
tions.

Due to lack of space, we leave the detailed proof to a
separate draft available at:
http://logic.is.tsukuba.ac.jp/~kam/level2-proof.ps

1. INTRODUCTION
We are interested in precise semantics of control opera-

tors such as callcc in Scheme and SML/NJ. Such semantics
is often given by a set of equations (axioms) which char-
acterize the operational behavior of control operators. In
our previous work [6], we axiomatized the control operators
for delimited continuations. Specifically, we gave sound and
complete axiomatizations to the following two calculi:

• shift and reset by Danvy and Filinski [1]

• callcc, abort and reset

These two theories are equivalent in the sense that we
have a natural interpretation from one theory to the other.
For the latter case, the theory consists of (1) the axioms in
computational lambda calculus by Moggi [7], (2) the axioms
for callcc and abort by Sabry and Felleisen [10], and (3) a
few simple and natural axioms which characterizes the reset
operator. Moreover, we showed the latter theory is conser-
vative over the theory for callcc and abort, hence, the extra
expressiveness of delimited continuations is exactly that ex-
pressed by the delimiter (as one expects.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

While the shift and reset operators give programmers more
freedom to control their programs, a problem arises when
one wants to combine two programs each of which has dif-
ferent use of shift and reset.

To see this, let us consider the following situation. We are
to prove the correctness of partial evaluator, which receives a
source program and after some binding-time analysis, which
evaluates static parts of the program and produces a residue
program. Several partial evaluators use the shift and reset
operators to perform so called let-insertion (see for example
Thiemann [11]). If the source program of partial evaluator
already contains the shift and reset operators and those op-
erators are static in the sense that they must be evaluated at
the specialization time, then a conflict may arise. The two
different uses of shift and reset operators might interact so
that shift in the source program may capture a continuation
up to a reset operator for let-insertion, which would result
in a wrong answer.

A solution of this problem already exists in Danvy and
Filinski’s work [1]. Namely, they proposed an infinite num-
ber of shift and reset operators indexed by a natural number
n > 0, and each level-n shift operator captures the continu-
ation up to the (closest) reset operator of level-n or higher.
To explain it in the evaluation-context semantics, let E1 be
an arbitrary evaluation-context, and E2 be an evaluation-
context with level less than n, and m ≥ n. Then we have:

E1[〈E2[ξnc.M]〉m]
evaluates to

E1[〈M{c := λf.〈E2[f]〉n}〉m]

where 〈 〉m is the level-m reset operator, ξnc.M is the level-n
shift operator, and {c := · · · } is the usual capture-avoiding
substitution. It is easy to see the shift operator captures the
delimited continuation up to the corresponding reset opera-
tor. A subtle point here is that level-n shift cannot escape
from level-m reset if m ≥ n, thus each shift cannot freely se-
lect its corresponding reset. Rather, higher-level operators
dominate lower-level operators, thus the hierarchy of control
operators.

Surprisingly, this hierarchy of shift and reset has a (rel-
atively) simple and uniform functional CPS-transform which
Danvy and Filinski called CPS-hierarchy. The CPS-hierarchy
may be viewed as a composition of n CPS-translations, thus
inserting n continuation parameters. In order to consider
level-n control operators, we need n+1 continuation parame-
ters, for instance, the standard shift operator (level-1 shift)
needs the CPS-hierarchy for two continuation parameters.
For details about CPS-hierarchy, see Danvy and Filinski [1]

and Danvy and Yang [2].
The use of level-n delimited control operators is not re-

stricted to program manipulations. A certain kinds of con-
trol mechanism such as backtracking can be written con-
cisely with shift and reset, and to build a large program
from small modules, one needs to ensure each use of shift
and reset does not interfere. The hierarchy of level-n control
operators can give a (partial) solution to such a situation.
Note, however, since higher levels dominate lower levels,
each use of shift and reset cannot be completely indepen-
dent, thus we cannot freely compose two program modules
both using shift and reset. The hierarchy of level-n shift
and reset operators is useful in the case where Danvy and
Yang [2] mention other applications of higher level delim-
ited continuations, hierarchical backtracking and quantifier
alternation.

One may consider other variations for delimited- (or some-
times called partial-) continuation operators, such as Felleisen’s
prompt [3] and Hieb et al’s subcontinuations [9]. There are
also extensions of these operators which allows multiple uses
of control operators [4], [5]. These proposals are certainly
useful and easier to use than higher-level shift and reset.
However, an important merit of Danvy and Filinski’s oper-
ators is that they have a simple, functional CPS-transform,
while other proposals do not have such simple (and func-
tional) CPS-transform as far as we know. To our view, the
CPS-transform best describe the precise semantics of con-
trol operators, thus, we can build a solid foundation on top
of them.

In this work, we first discuss the difficulty of axiomatizing
the level-n delimited continuations, then extend our pre-
vious result to the level-2 world, namely, we give a sound
and complete axiomatization of the calculus with level-1 and
level-2 control operators for delimited continuations.

2. DIFFERENCES BETWEEN LEVEL-1 AND
LEVEL-2 AXIOMATIZATION

One may think extending the axiomatization of level-1 to
level-2 can be done straightforwardly. But there are several
differences between level-1 operators and level-n (n > 1)
operators and these differences made our task harder than
one might expect initially. Let us explain them in order.

Firstly, the level-2 abortive operator A2 cannot be consid-
ered as a constant (value). In the case of the level-1 abortive
operator A1, the equation (λx.A1x)M = A1M is valid, so
introducing this operator as a term constructor is equiva-
lent to have it as a value corresponding to λx.A1x. On the
other hand, (λx.A2x)M = A2M is in general not valid with
respect to the CPS-semantics (for instance, let M be A1N
then the left hand side is equal to A1N (since λx.A2x is a
value) while the right hand side is equal to A2N (since A2 is
stronger than A1). As a conclusion, we should take care of
the difference between A2 and λx.A2x. (We also note that,
the term λx.A2x appears in several places in our proof.)

Secondly, and more importantly, the callcc-lift axiom does
not extend naturally to the case of level-2. To see this, let
us recall the axiom for level-1:

E0[callccM] = callcc(λk.E0[M(λf.k(E0[f]))])

where E0 is a pure evaluation context (level-0 evaluation
context), k 6∈ FV (E0[M]) and f 6∈ FV (kE0[]). This axiom
(or its variant) has been the central axiom to characterize

the role of callcc operator. However, its level-2 counterpart:

E1[callcc2M] = callcc2(λk.E1[M(λf.k(E1[f]))])

is not valid when we take E1 to be a level-1 evaluation con-
text1. For instance, let E1 be A1[] (where A1 is the level-1
abort operator), then

LHS = A1(callcc2M) = callcc2M

RHS = callcc2(λk.E1[M(λf.k(A1f))])

= callcc2(λk.E1[M(λf.A1f)])

= E1[M(λf.A1f)]

The results are completely different. Lack of the callcc-lift
axiom brings a big difficulty in obtaining a complete axiom-
atization.

A rescue for this problem is given by Murthy’s “telescope”
axiom [8]. A level-2 instance of this axiom is:

C2(λγ.M) = C1(λx.C2(λy.M{γ := λv.y〈xv〉1}))
where we used the C-operator instead of callcc since the ax-
ioms looks simpler for the case of C-operator than callcc2

The role of this axiom is to split a single occurrence of level-
n control operator (C2 in this case) to a sequence of n control
operators of level 1, 2, · · · , n.

Combining the telescope axiom with the level-1 C-lift ax-
iom (which is valid), we can simulate the level-2 version of
C-lift axiom as:

〈E[C2(λγ.M)]〉1
= 〈E[C1(λk.C2(λγ.M{γ := λv.γ〈kv〉1}))]〉1
= 〈C1(λk.(C2(λγ.M{γ := λv.γ〈k(A1(E[v]))〉1})))〉1
= 〈C1(λk.C2(λγ.M{γ := λv.γ〈E[v]〉1}))〉1
= 〈C2(λγ.M{γ := λv.γ〈E[v]〉1})〉1
= C2(λγ.M{γ := λv.γ〈E[v]〉1})

where E is a level-0 evaluation context.
We can easily see that the outer context 〈E[]〉1 was cap-

tured and passed to the parameter γ. This rewriting has
the same effect as C-lift except that we cannot lift C2 step
by step, but we must lift it to the next reset operator at a
time.

3. HIGHER LEVEL SHIFT AND RESET
Our source language is a type-free lambda calculus with

control operators with the call-by-value semantics. Our ax-
iomatization should go through for the typed case, but it is
left for future work. In this paper, we restrict ourselves to
level-2 only. The grammar of the source calculus is given
by:

(terms) M, N ::= V | MN | 〈M〉1 | 〈M〉2
(values) V ::= x | λx.M | C1 | C2

where 〈 〉i is the reset operator and Ci is a variant of the shift
operator (similar to Felleisen’s operator). The original shift
operator proposed by Danvy and Filinski can be defined

1Here level-i context is an evaluation context in which there
are no reset operators of level-i + 1 or higher which enclose
the hole.
2This choice is only superficial, since a similar but more
complex axiom holds for callcc.

by Ci. The index i indicates the level, with i = 1 being
the base level. We abbreviate Ci(λx.M) as Cix.M , and if
x 6∈ FV (M), it is also abbreviated as AiM .

The informal semantics of these control operators is given
using evaluation contexts as follows (we assume i > j here):

E[〈V 〉i] → E[V]

E[〈Ej−1[CjV]〉i] → E[〈V (λf.Aj(E
j−1[f]))〉i]

E[〈Ej−1[AjV]〉i] → E[V]

where E is an evaluation context (in call-by-value), and Ej

is a level-j evaluation context defined below.
The first line says delimiting a value does nothing. The

second line explains how Cj works; it captures the continu-
ation up to (delimited by) the reset operator whose level is
the same as or higher than j. Unlike the shift operator, but
like callcc, the operator Cj inserts an occurrence of Aj in the
captured continuation. The third line says that Aj aborts
the current continuation up to the reset operator whose level
is the same as j or higher.

The evaluation contexts used above are defined as follows:

E = [] | EM | V E | 〈E〉j
Ei = [] | EiM | V Ei | 〈Ei〉j for j ≤ i

We can also consider the shift operator. The operational
semantics of the control operator S is given by:

E[〈Ej−1[SjV]〉i] → E[〈V (λf.〈Ei−1[f]〉j)〉i]
Then the real shift operator is given by ξic.M ≡ Si(λc.M).
The two operators C and S can be defined by each other:

Si = λz.Ci(λk.z(λx.〈kx〉i))
Ci = λz.Si(λk.z(λx.Si(λd.kx)))

4. CPS-TRANSLATION
A CPS-translation is a syntactic translation from the source

calculus given in the previous section to the target calculus,
the pure type-free lambda calculus without control opera-
tors.

The strength of shift and reset operators due to Danvy and
Filinski is their semantics is precisely given by a functional
CPS-translation. Unlike ordinary CPS-translations, their
CPS-translation takes more than one continuation param-
eters in order to interpret level-n control operators. More
precisely, if the source calculus has up to level-n control op-
erators, we need a CPS-transform with n + 1 continuation
parameters.

In our case, we have up to level-2 control operators, so
we need CPS-hierarchy with three continuation parameters,
which are denoted by k, γ, and δ. These three continuation
parameters are called the (standard) continuation parame-
ter, the meta- continuation parameter, and the meta-meta-
continuation parameter, respectively.

In summary, the CPS-translation here translates a term
in the source calculus (with control operators) to a term
in the target calculus, and the resulting term takes three
parameters k, γ, δ. For readability we present here a CPS-
translation where all the η-redexes are reduced, so some re-
sulting terms may not take three parameters.

Here we give a Plotkin-style CPS-translation, that is, for
the translation of a function, the continuation parameter
comes after the argument of the function.

[[]] : Term → Target Term

[[V]] = λk.kV ∗

[[MN]] = λk.[[M]](λm.[[N]](λn.mnk))

[[〈M〉1]] = λkγ.[[M]]θ1(λv.kvγ)

[[〈M〉2]] = λkγδ.[[M]]θ1θ2(λv.kvγδ)

()∗ : Value → Target Term

x∗ = x

(λx.M)∗ = λx.[[M]]

C1
∗ = λxk.x(λvk′.kv)θ1

C2
∗ = λxkγ.x(λvk′γ′.kvγ)θ1θ2

where we used abbreviations as θ1 = λxγ.γx and θ2 =
λxδ.δx.

5. AXIOMS
The set of axioms for λC2 is given in Figure 1 where we

introduce an abbreviation 〈M〉0 ≡ M to state the axiom
C-elim uniformly.

In order to read the axioms, recall that we abbreviate
Ci(λx.M) as Cix.M . Note also that the indices i and j range
over {1, 2} only, hence, we do not consider the case for j = 0
in, e.g., the axiom reset-lift-2 (such an instance is not sound).

Most axioms are level-i extension of those for level-1 in our
previous work [6]. (1) The axiom βΩ is valid only for level-0
contexts. To compensate the weakness of this axiom, we
have two axioms, reset-lift and reset-lift-2. (2) The axiom
C-lift is only applicable to level-0, as we explained before.
(3) Most other axioms but telescope are natural extensions
from the axioms for level-1. However, there are subtle dif-
ferences, for instance, the axiom C-elim needs an occurrence
of a reset operator if it is applied to level-2. In the C-abort
axiom, the argument of k is restricted to a value V , while
its level-1 counterpart allows an arbitrary term. The axiom
such as reset-reset and C-top were not included in the level-1
axiomatization because their level-1 instances are derivable
from other axioms. Since it is not known to us if their level-2
instances are derivable or not, we included these axioms. (4)
The axiom reset-C and telescope did not exist in the level-1
for the obvious reason.

The telescope axiom (written in terms of the shift op-
erator) was first proposed by Murthy [8]. We should also
remark that Murthy gave a type system and based on the
typing he derived many sound equations, most of which are
very similar to ours, but he did not mention completeness.
The precise relationship between his axioms and ours is not
clear at present, since he gave axioms based on the Si oper-
ator and also he worked in a typed setting. However, both
theories look quite similar; in a sense, our present work could
be understood as proving the completeness of (some varia-
tion of) Murthy’s axioms.

The main result of this paper is that our theory for level-2
is sound and complete with respect to the CPS-translation.

Theorem 1 (Soundness & Completeness). Let M1

(λx.M)V = M{x := V } βv

λx. V x = V ηv, if x 6∈ FV (V)

(λx.E0[x])M = E0[M] βΩ, if x 6∈ FV (E0)

〈V 〉i = V reset-value

〈(λx.M)〈N〉i〉i = (λx.〈M〉i)〈N〉i reset-lift

〈(λx.M)〈N〉j〉i = 〈(λx.〈M〉i)〈N〉j〉i reset-lift-2, i > j

Cik.〈M〉i = Cik.M C-reset
Cik.k〈M〉i−1 = 〈M〉i−1 C-elim, if k 6∈ FV (M)

Cik.C[Ei[kV]] = Cik.C[kV] C-abort, if k is not captured by C

E0[C1M] = C1k.M(λf.k(E0[f])) C-lift, if k 6∈ FV (E0[M]) and f 6∈ FV (kE0)

〈〈M〉i〉j = 〈M〉max(i,j) reset-reset

〈Cik.M〉j = Cik.M reset-C, if i > j

〈Cik.M〉i = 〈M{k := λx.Cik
′.x}〉i C-top

C2γ.M = C1k.C2γ.M{γ := λf.γ〈kf〉1} telescope

Figure 1: Axioms of λC2 (i, j range over {1, 2})

and M2 be terms in the source calculus. Then we have:

λC2 ` M1 = M2 if and only if λβη ` [[M1]] = [[M2]]

We can prove the soundness by calculation. In the next
section we give a very brief summary of completeness proof.
The details can be found in the accompanying draft.

6. COMPLETENESS PROOF
As in our previous work, we first analyze the structure

of the target calculus then define the translation from the
target to the source. The target calculus is the closure of
the image of the CPS-translation which is closed by the βη-
reductions.

(term) T ::= λk.Q | WW

(preterm-1) Q ::= λγ.R | TK | KW

(preterm-2) R ::= λδ.S | QG | GW

(answer) S ::= RH | HW

(value) W ::= x | λx.T

(continuation) K ::= k | λx.Q

(meta-cont.) G ::= γ | λx.R

(meta-meta-cont.) H ::= δ | λx.S

Terms in the class T are called T -terms. Similarly for Q-,
R-, S-, W -, K-, G-, H-terms. Terms, values, level-0 context
(i.e. E0), level-1 context (i.e. E1), and level-2 context (i.e.
E) are mapped to T -, W -, K-, G-, H-terms in the target
calculus. Q- and R-terms do not have intuitive counterpart
in the source calculus. We should note that the meta-meta-
continuation variable δ is linear.

The inverse translation from the target language to the
source language is given by:

T −1(λk.Q) = C1(λk.Q−1(Q))

T −1(W1W2) = W−1(W1)W−1(W2)

Q−1(λγ.R) = C2(λγ.R−1(R))

Q−1(TK) = K−1(K)T −1(T)

Q−1(KW) = K−1(K)W−1(W)

R−1(λδ.S) = S−1(S)

R−1(QG) = G−1(G)〈Q−1(Q)〉1
R−1(GW) = G−1(G)W−1(W)

S−1(RH) = H−1(H)〈R−1(R)〉2
S−1(HW) = H−1(H)W−1(W)

W−1(x) = x

W−1(λx.T) = λx.T −1(T)

K−1(k) = k

K−1(λx.Q) = λx.〈Q−1(Q)〉1
G−1(γ) = γ

G−1(λx.R) = λx.〈R−1(R)〉2
H−1(δ) = λx.x

H−1(λx.S) = λx.S−1(S)

Since the meta-meta-continuation variable δ is linear, we
can simply ignore it. It can be seen that the above inversion
takes a very uniform form, and we can extend it to level-3
or higher levels.

The remaining proof proceeds as in the previous work. (1)
Prove the inverse translation is really an inverse of the CPS-
translation (up to the equality in the source calculus), that
is, T −1([[M]]) = M in λC2. (2) Prove the β- and η-equality
in the target are preserved by the inverse translation. (3)
To prove (2), we need to prove substitutions in the target
calculus is preserved by the inverse translation.

The detailed proof needs a lot of calculations so we leave
the detailed description to a separate draft.

7. CONCLUSION
We have given the axiomatization of the level-2 delimited

continuation operators, thus we can reason about programs
with two different sets of control operators. An obvious next
step is to have level-n axiomatization for arbitrary n > 0.
In the level-2 world, several things are different from the
level-1 operators, for instance, the operator A cannot be
regarded as a constant (value), and C-lift no longer holds
for C2. However, once we have obtained the level-2 axioms,
it should be straightforward to formulate axioms of higher
levels (just replace i by higher levels). The only problem
we see is the telescope axiom, but Murthy [8] already gave a
generalized telescope axiom for any level. In summary, going
to level-3 or higher levels seems a straightforward extension
of this paper (the details are yet to be done, though).

Besides going to higher levels, there are two major re-
maining problems: (1) the set of axioms we give in this
paper may not be optimal in the sense that some axioms
may be derived from others. In fact, for the case of level-1
axiomatization [6], we can derive C-top and reset-reset from
other level-1 axioms. At present, we do not know how to
derive the level-2 instances of these axioms from other ax-
ioms. (2) we only worked for the C operators, while our
actual aim is to axiomatize the S operator. It is easy just
to obtain a sound and complete axiomatization for S using
the translation given in this paper, but obtaining a good ax-
iomatization needs more work. We believe this can be done
in the same line as our previous work.

Acknowledgments: The author would like to thank
Masahito Hasegawa who improved the axioms and the proof
in the previous work, and also pointed out errors in earlier
versions of this abstract. He also thanks to anonymous ref-
erees for constructive comments.

This work was supported in part by Grant-in-Aid for Sci-
entific Research No. 13680411, from MEXT of Japan.

8. REFERENCES
[1] O. Danvy and A. Filinski. Abstracting Control. In

Proc. 1990 ACM Conference on Lisp and Functional
Programming, pages 151–160, 1990.

[2] O. Danvy and Z. Yang. An Operational Investigation
of the CPS Hierarchy. In ESOP 99, Lecture Notes in
Computer Science 1576, pages 224–242, 1999.

[3] M. Felleisen. The Theory and Practice of First-Class
Prompts. In Proc. 15th Symposium on Principles of
Programming Languages, pages 180–190, 1988.

[4] C. A. Gunter, D. Remy, and J. G. Riecke. A
Generalization of Exceptions and Control in ML-Like
Languages. In Proc. Functional Programming and
Computer Architecture, pages 12–23, 1995.

[5] Y. Kameyama. A Type-Theoretic Study on Partial
Continuations. In Proc. IFIP International Conference
on Theoretical Computer Science, Lecture Notes in
Computer Science 1872, pages 489–504, 2000.

[6] Y. Kameyama and M. Hasegawa. A Sound and
Complete Axiomatization of Delimited Continuations.
In Proc. ACM International Conference on Functional
Programming, pages 177–188, 2003.

[7] E. Moggi. Computational Lambda-Calculus and
Monads. In Proc. 4th Symposium on Logic in
Computer Science, pages 14–28, 1989.

[8] C. Murthy. Control Operators, Hierarchies, and

Pseudo-Classical Type Systems: A-Translation at
Work. In Proc. ACM Workshop on Continuation,
pages 49–71, 1992.

[9] Hieb R., R. Dybvig, and C. W. Anderson.
Subcontinuations. Lisp and Symbolic Computation,
6:453–484, 1993.

[10] A. Sabry and M. Felleisen. Reasoning about Programs
in Continuation-Passing Style. Lisp and Symbolic
Computation, 6(3-4):289–360, 1993.

[11] P. Thiemann. Cogen in Six Lines. In Proc.
International Conference on Functional Programming,
pages 180–189, 1996.

