
Unified Program Generation and Verification:
A Case Study on Number-Theoretic Transform

Masahiro Masuda and Yukiyoshi Kameyama

University of Tsukuba, Tsukuba, Japan
masa@logic.cs.tsukuba.ac.jp, kameyama@acm.org

Abstract. Giving correctness assurance to the generated code in the
context of generative programming is a poorly explored problem. Such
assurance is particularly desired for applications where correctness of the
optimized code is far from obvious, such as cryptography.
This work presents a unified approach to program generation and verifi-
cation, and applies it to an implementation of Number-Theoretic Trans-
form, a key building block in lattice-based cryptography. Our strategy
for verification is based on problem decomposition: While we found that
an attempt to prove functional correctness of the whole program all at
once is intractable, low-level components in the optimized program and
its high-level algorithm structure can be separately verified using proce-
dures of appropriate levels of abstraction.
We demonstrate that such a decomposition and subsequent verification of
each component are naturally realized in a program-generation approach
based on the tagless-final style, leading to an end-to-end functional cor-
rectness verification of a highly optimized program.

1 Introduction

State-of-the-art multi-stage programming languages and systems can generate
highly performant code [14,15,24,25]. In terms of reliability, however, assuring
correctness beyond type safety of generated code has been rarely provided and
thus it remains a relatively unexplored problem. For applications where code
correctness is as important as performance, this is an undesirable situation.

Cryptography is an example of such application domains. Expert cryptogra-
phers still write performance-critical code in assembly. Assembly code makes it
hard to be confident in the correctness of its implementation, as well as com-
plicates the development and maintenance process. Although there has been re-
markable progress on verifying and generating code for low-level cryptographic
primitives that are used today [11,26], doing full-scale verification of bleeding-
edge primitives that are still being developed is costly and unrealistic. Number-
Theoretic Transform (NTT) is one example of recent primitives that is of in-
creasing interest in lattice-based cryptography. More specifically, NTT is a vari-
ant of Fast Fourier Transform specialized to a finite field; It is used to acceler-
ate polynomial multiplication on prime-field coefficients, which is at the heart
of cryptographic constructions based on the Ring learning with errors (RLWE)

problem [18]. Since the RLWE problem is widely recognized as a promising hard-
ness assumption for post-quantum cryptography, many cryptographic schemes
based on the hardness of the RLWE problem have been developed, along with
optimized assembly implementations of NTT [13,3,17,23]. We believe that the
programming language community should be able to help implement correct and
efficient code for such state-of-the-art primitives.

This work contributes a DSL-based approach to an NTT implementation,
which uniformly represents code generation and verification in a single frame-
work. Our approach is based on module-based abstraction techniques for embed-
ded DSL implementations that are well-known in the functional programming
community: Specifically, the tagless-final style [9] is used for code generation.
Our framework extends our previous work on code generation [19] to accommo-
date program verification as an instance of interpretations of a DSL program.
By exploiting the highly parameterized nature of the framework, we can realize
interval analysis and symbolic computation at the level of an abstract DSL, while
taking into account low-level details that are present in the generated code.

We have performed both safety property and functional correctness verifi-
cation, which led us to several interesting findings. First, we found that a DSL
framework based on the tagless-final style naturally enables a custom imple-
mentation of interval analysis, and that it can yield more precise bounds than
those estimated by the state-of-the-art static analyzer for C programs, Frama-C
value analysis tool [7], applied to the generated code. Moreover, the more pre-
cise bounds allowed us to discover a new optimization opportunity that was not
known before. Second, we found that decoupling the low-level details of modu-
lar reductions from the high-level structure of the NTT algorithm is the key to
carrying out the end-to-end equivalence checking against the DFT reference. We
summarize our contributions as follows1.

– A unified treatment of code generation and verification in a single framework

– Interval analysis for NTT that verifies the absence of integer overflow (Sec-
tions 4.1 and 4.2)

– A verified derivation of a new code optimization based on interval analysis
(Section 4.3)

– End-to-end verification of functional correctness of the highly optimized
NTT code against a textbook DFT algorithm (Section 5)

The rest of the paper is organized as follows: Section 2 gives background to
this work. We describe our verification tasks concretely in Section 3 before we go
into our technical contributions in Sections 4 and 5. We recap the pros and cons
of our approach in Section 6. Section 7 discusses related work and we conclude
in Section 8.

1 Our code is available in https://github.com/masahi/nttverify.

2 Background

2.1 Number-Theoretic Transform

NTT is an O(n log n) time algorithm to compute Discrete Fourier Transform
(DFT) on a finite field. DFT is defined as follows: Given an input a = (a0, a1, ..., an−1)
such that ai ∈ Zq, the finite field of integers modulo q, it computes y =
(y0, y1, ..., yn−1), yi ∈ Zq by the following formula [10]:

yk =

n−1∑
j=0

ajω
kj
n (1)

Here, ωn is the nth primitive root of unity modulo q, satisfying ωnn ≡ 1
(mod q). All addition and multiplication are done in modulo q. As an example
of the choice of parameters, the NTT implementation in NewHope [3], which
our previous work on code generation is based on, uses n = 1024 and q = 12289.

Algorithm 1 shows the pseudocode of a textbook NTT algorithm. It uses the
standard Cooley-Tukey algorithm [10] and all powers of ωn, called twiddle fac-
tors, are precomputed and stored in an array Ω. Each iteration of the outermost
loop is often called a stage.

Algorithm 1 The pseudocode for the iterative, in-place NTT
1: procedure NTT

Input: a = (a0, a1, ..., an−1) ∈ Zn
q , precomputed constants table Ω ∈ Zn

q

2: Output: y = DFT(a), in standard order
3: bit-reverse(a)
4: for (s = 1; s ≤ log2(n); s = s+ 1) do
5: m = 2s

6: o = 2s−1 − 1
7: for (k = 0; k < m; k = k +m) do
8: for (j = 0; j < m/2; j = j + 1) do
9: u = a[k + j]
10: t = (a[k + j +m/2] ·Ω[o+ j]) mod q
11: a[k + j] = (u+ t) mod q
12: a[k + j +m/2] = (u− t) mod q
13: end for
14: end for
15: end for
16: end procedure

The innermost loop performs the Cooly-Tukey butterfly operation with mod-
ular arithmetic. Existing work [3,23] and our code-generation framework use spe-
cialized algorithms for modular reductions. We follow their choice of algorithms
and use Barrett reduction [6] to reduce the results of addition and subtraction,
and Montgomery multiplication [20] for multiplication followed by reduction. We
also follow the setting in NewHope for the choice of parameters: The modulus
parameter q is 12289, and the input size n is 1024. The input is an array of
integers whose values fit in 14 bits. Modular-reduction algorithms take one or
two 16-bit values and compute a 14-bit output.

2.2 NTT code generation in the tagless-final style

In our previous work [19], we introduced a code-generation framework for NTT,
based on the tagless-final style [9]. Since this work builds heavily on our code-
generation framework, this section gives a brief introduction to that work.

The tagless-final style is a way to realize a typed DSL via embedding into a
typed host language [9]. It uses abstraction facilities in host languages, such as
Haskell type classes or the ML module system, to define the syntax of the DSL
parameterized by an abstract type for the DSL semantics. Different type class in-
stances or implementations of the module signature give distinct interpretations
of a single DSL program2.

Our code generator is parameterized in two ways: The first one is the seman-
tics of DSL, which follows the standard practice of the tagless-final style. The
second one is the semantics of the arithmetic domain the NTT program operates
on. We call the first abstraction the language abstraction and the second one
the domain abstraction. Both abstractions are represented in the ML-module
system described below.

The language abstraction represents the DSL syntax by a module signature,
and its semantics by a module structure. The following module signature C_lang
represents the syntax of our DSL for generating code in the programming lan-
guage C. The DSL has sufficient constructs for expressing the NTT algorithm
in this paper.

module type C_lang = sig

type 'a expr

type 'a stmt = 'a expr

val int_ : int -> int expr (* constant *)

val (%+) : int expr -> int expr -> int expr

...

val for_ : int expr -> int expr -> int expr -> (int expr -> unit stmt)

-> unit stmt

...

end

The domain abstraction is represented by the following signature:

module type Domain = sig

type 'a expr

type t

val lift: t -> t expr

val add: t expr -> t expr -> t expr

val sub: t expr -> t expr -> t expr

val mul: t expr -> t expr -> t expr

end

Using these signatures, we describe the innermost loop of Algorithm 1 as
follows:
2 In the module system of ML-family languages, a signature is an interface of a module,

and a structure is its implementation.

for_ (int_ 0) m_half (int_ 1) (fun j ->

let index = k %+ j in

let omega = arr_get prim_root_powers (coeff_offset %+ j) in

let2

(arr_get input index)

(D.mul (arr_get input (index %+ m_half)) omega)

(fun u t ->

seq

(arr_set input index (D.add u t))

(arr_set input (index %+ m_half) (D.sub u t))))

arr get and arr get are array access and assignment, respectively. let2 V1 V2

(fun t u -> V3) is syntactic sugar for the doubly-nested let binding: let t =

V1 in let u = V2 in V3. The variable prim root powers stores precomputed
twiddle factors in an array. All modular-arithmetic operations are performed by
the module D which implements the Domain signature.

The meaning of this program depends on concrete instantiations of the two
abstractions. For this work, we use the term interpretation to refer to a con-
crete instantiation of the language abstraction, and domain implementation
to refer to a corresponding one for the domain abstraction.

The behavior of DSL programs is determined by giving an interpretation of
the module signature C lang including the type ’a expr. In our previous work,
the type ’a expr is interpreted as an OCaml string, since their purpose was
solely to generate C programs. For instance, a DSL term for is translated to
the string representation of the for loop in the C language. In this work, we use
another interpretation that evaluates DSL terms in OCaml by interpreting the
type ’a expr as ’a as follows:

module R = struct

type 'a expr = 'a

let int_ n = n

let (%+) x y = x + y

...

let for_ low high step body =

let index = ref low in

for _ = 0 to (high - low) / step - 1 do

body !index;

index := !index + step

done

...

end

When the NTT program is instantiated with this interpretation, we can di-
rectly execute the program under the normal semantics for OCaml. The output
depends on the domain implementation. The most canonical one, also used in
C-code generation, is the domain of integers modulo q with low-level implemen-
tations of modular reductions. But we can also use entirely different domains
for analysis or verification purposes. For example, we can lift implementations

of modular reductions to the domain of intervals of integers modulo q: This lets
us analyze the NTT program to verify the absence of integer overflow, as we will
discuss in Section 4. Similarly, by swapping in a domain representing purely sym-
bolic operations on a finite field, the NTT program would be able to compute a
polynomial representation of the outputs with respect to symbolic inputs. Such
a highly abstract representation of the NTT computation facilitates verification
of functional correctness, as discussed in Section 5.

3 Verification tasks and strategy

Before going into our technical contributions, we summarize the verification tasks
at hand and our strategy for tackling them.

To generate a highly efficient C program, our NTT program contains vari-
ous low-level tricks that make it vulnerable to subtle errors. We highlight sev-
eral issues that are particularly unique to our program, using the pseudocode
of the innermost loop of the NTT program shown in Algorithm 2. The pseu-
docode differs from Algorithm 1 in that we use low-level modular reductions
barrett reduce and montgomery multiply reduce for Barrett reduction and
Montgomery multiplication, respectively. We have also introduced an optimiza-
tion technique called lazy reduction [3,19] for Barrett reduction.

Algorithm 2 The pseudocode for the innermost loop
for (j = 0; j < m/2; j = j + 1) do

u = a[k + j]
t = montgomery multiply reduce(a[k + j +m/2], Ω[o+ j])
if s mod 2 == 0 then

a[k + j] = barrett reduce(u+ t) . lazy reduction
else

a[k + j] = u+ t
end if
a[k + j +m/2] = barrett reduce(u+ 2q − t)

end for

Highly non-trivial implementation of modular reductions Given a 16-bit
integer, barrett reduce computes a value that is congruent to the input and fits
in 14 bits3. montgomery multiply reduce multiplies 16-bit and 14-bit integers
and reduces the product to fit in 14 bits. To be efficient and safe against timing
attacks, these algorithms are implemented in a tricky way. Listing 1 shows a
C implementation of Montgomery multiplication. They rely on the instructions
mullo (and mulhi, resp.) to compute the lower 16 bits (and the upper 16 bits,
resp.) of the 32-bit product, to keep all intermediate values within 16 bits4. The
implementation is carefully constructed to make sure that an occasional carry
bit is correctly accounted and the output is guaranteed to fit in 14 bits. The
latter requirement is satisfied by inserting conditional subtraction csub, which
subtracts the modulus parameter q from its argument if it is greater than or

3 We use 12289, which fits in 14 bits, as the modulus parameter q (See Section 2.1).
4 This is for maximizing parallelism from vectorization.

equal to q, and returns it otherwise. csub computes such a value in constant
time5.

uint16_t csub(uint16_t arg0) {

int16_t v_0 = ((int16_t)arg0 - Q);

return (uint16_t)(v_0 + ((v_0 >> 15) & Q));

}

uint16_t montgomery_multiply_reduce(uint16_t x, uint16_t y) {

uint16_t mlo = mullo(x, y);

uint16_t mhi = mulhi(x, y);

uint16_t mlo_qinv = mullo(mlo, Q_INV);

uint16_t t = mulhi(mlo_qinv, Q);

uint16_t has_carry = mlo != 0;

return csub(mhi + t + has_carry);

}

Listing 1: Montgomery multiplication implemented in C (non-vectorized version)

Subtraction in unsigned integers Since data values in our generated code
are unsigned integers, we need to be careful with subtraction. to avoid underflow.
We need to add to the first operand a multiple of q that is greater than the second
operand. We must also ensure that this addition never causes overflow. For our
choice of q, the correct multiple of q meeting these conditions turned out to be
2q.

Lazy reduction As observed in the work on NewHope [3], we do not have
to apply Barrett reduction after every addition: Since the result of adding two
14-bit values fits in 15 bits, in the next stage we can add two 15-bit values
without the risk of 16-bit overflow. Therefore, Barrett reduction only has to be
applied at every other stage. Section 4.3 will show that we can further eliminate
Barrett reductions. A more aggressive optimization makes the generated code
more vulnerable to integer overflow.

End-to-end verification We are not merely interested in verifying individual
pieces of low-level code: The computation of the innermost loop shown in Al-
gorithm 2 is executed O(n log n) times over an entire execution of NTT, where
n = 1024 in our case. Our goal is to show that such an accumulated computation
gives rise to the value that is equivalent (modulo q) to the one computed by the
DFT formula (1).

In this work, we consider both safety and functional correctness. In particular,
for the safety aspect, we consider the problem of verifying the absence of integer

5 In cryptography implementations, being constant-time refers to having no data-
dependent control flow, which can become a security hole for timing attacks.

overflow, and for the functional correctness, we consider the equivalence of the
NTT program against DFT. We consider the safety aspect separately because
(1) it simplifies the latter task and (2) interval analysis we develop for verifying
the absence of integer overflow uncovers a new optimization opportunity. So we
believe our safety verification is of independent interest.

For verifying functional correctness, we do not pursue an approach using an
interactive proof assistant such as Coq, which can give us the highest level of
correctness guarantee. Since we aim at generating and verifying highly efficient
cryptographic code whose implementation strategy changes frequently, we stick
to a lightweight approach that allows one to change the implementation and
adapt the verification component quickly and easily.

Thus, we have developed a dedicated procedure for our verification problem.
Our approach works on a DSL program, not on the generated C program. But the
DSL program contains all low-level details that are present in the C program, so
our verification procedure takes all of such details into account. Thus, correctness
assurance we give to the DSL program directly translates to the generated C
program6. We have found that an attempt to prove functional correctness of
the whole program all at once is intractable: Instead, our overall strategy for
end-to-end verification is based on decoupling low-level components in the NTT
program from the high-level aspect of the NTT algorithm. Verification of low-
level components can be done straightforwardly, while we developed a simple and
effective verification procedure to show the equivalence of the NTT program
and the DFT formula in a purely mathematical setting. The decision to do
verification at the DSL level and the highly parameterized nature of our DSL
program make such decoupling and subsequent verification possible.

4 Interval analysis on the NTT program

To verify the absence of integer overflow, we present a simple interval analysis
as part of a program-generation framework for NTT programs. We have imple-
mented our own analyzer, rather than using an off-the-shelf tool for C programs,
to exploit domain-specific knowledge and compute more precise bounds than the
ones computed by the latter tools such as Frame-C [7]. We will show that our
analysis not only verifies the absence of integer overflow but also allows us to
derive a new optimization that was not known previously.

4.1 Modular arithmetic on intervals

We have designed an abstract interpreter for our modular-arithmetic routines,
building on the two abstractions we described in Section 2.2: We use the in-
terpretation of DSL that evaluates DSL terms directly in OCaml, and the set

6 For simplicity, we do not consider the effect of vectorization for our verification
purpose, although the generated program is fully vectorized with multiple SIMD
instruction sets. All of the low-level issues that motivate our verification effort are
manifested in the non-vectorized implementation.

of intervals (low, high) as our domain implementation where low and high

are integers representing the lower and upper bounds, respectively. The Domain

module in Section 2.2 is instantiated to the following structure:

module IntegerModulo_interval : Domain = struct

type t = int * int

let add (x1, y1) (x2, y2) = ...

let sub (x1, y1) (x2, y2) = barrett_reduce([x1 + 2Q - y2, y1 + 2Q - x2])

let mul (x1, y1) (x2, y2) = ...

end

Simple operations such as addition can be directly lifted to the intervals,
building on the standard definition of interval arithmetic. Montgomery multi-
plication, represented by mul above, is lifted to intervals by composing basic
operations, such as mullo and mulhi, lifted to the interval domain.

Lifting Barrett reduction to interval domains requires more care. As shown
below, Barrett reduction requires only three operations.

uint16_t barrett_reduce(uint16_t x) {

uint16_t v = mulhi(x, 5);

return x - mullo(v, Q);

}

We could have lifted Barrett reduction by composing the interval version of
high product, low product, and subtraction. But this approach faces difficulty
in the subtraction x - mullo(v, Q): Its second operand is the result of low
product, which, when lifted to intervals, always results in the least precise range
[0, 65535]. Even though the first operand x is always greater than the second
one7, it cannot be automatically inferred by applying interval analysis naively. To
get maximally precise bounds, we lift Barrett reduction to intervals by applying
the integer domain operation to all integers in the input interval, and taking the
minimum and maximum of the results of these operations. This comes at the
high cost of runtime, but since the input to Barrett reduction is at most 16 bits,
it does not significantly slow down the analysis8.

4.2 Verifying bounds

Each low-level modular-arithmetic operation has certain conditions on its inputs
and output that need to be satisfied. We formulate these conditions as assertions
to be checked during interval analysis, summarized in Table 1.

For example, the second operand of addition and subtraction has a tighter
bound of max uint14, because it is the result of modular multiplication which
must fit in 14 bits where max uint14 refers to the maximum of unsigned 14-
bit integers, namely (1 � 14) − 1. Similarly for max uint15 and max uint16.

7 mullo(mulhi(x,5),q) is less than
⌊
x 1

q

⌋
q, since 5q < 65535 for our choice of q.

8 It took only a few seconds for the input of size 1024.

The bound of max uint15 on the first operand is due to lazy reduction. Bounds
in Table 1 in turn depend on the validity of bounds on Barrett reduction and
conditional subtraction, shown in Table 2.

Table 1. Pre/Post-conditions for input [x1, y1], [x2, y2] and output [x3, y3]

Operations Precondition Postcondition

add y1 ≤ max uint15 ∧ y2 ≤ max uint14 y3 ≤ max uint16

sub y1 ≤ max uint15 ∧ y2 ≤ max uint14 y3 ≤ max uint14

mul y1 ≤ max uint15 ∧ y2 < q y3 ≤ max uint14

Table 2. Pre/Post-conditions for input [x1, y1] and output [x2, y2]

Operations Precondition Postcondition

barrett reduce y1 ≤ max uint16 y2 ≤ max uint14

csub y1 < 2q y2 < q

For Barrett reduction, we need to verify an additional assertion saying that
the first argument of the final subtraction is not smaller than the second argu-
ment. This is realized by inserting an assertion as follows:

let barrett_reduce x =

...

let rhs = ...

assert (x >= rhs);

let res = x - rhs in

...

Note that the assertion is inserted in the structure IntegerModulo interval

only. We do not have to modify the DSL program, because it is parameterized
with respect to domain interpretations.

We have confirmed that, given an array of intervals [0, q − 1] as input, all of
our assertions are not violated. Hence, there is no possibility for integer overflow
for our code.

We have also conducted the same verification experiment on the generated
C code using the Frama-C value analysis plugin [7]. For this purpose, we added
the above assertions as ACSL specifications [1] to the generated C code. Frama-
C was able to verify all but two assertions: the postcondition in Table 2 and
the assertion on the bound before the final subtraction9. We suspect that this
outcome arises from directly translating Barrett reduction on integers to intervals
by composing interval operations, which, as we observed in Section 4.1, can lead
to a loss in precision.

4.3 Improving lazy reduction

During the course of interval analysis in the previous subsection, we found a way
to optimize the generated code even further: Barrett reduction after addition,

9 We have chosen options that maximize the precision of the analysis.

which we refer to as lazy Barrett reduction for brevity, needs to be applied
only once in three stages, rather than every other stage as we adopted from
NewHope. Realization of lazy reductions comes from the following observations:

– An operation that is most vulnerable to unsigned overflow is the addition
of 2q in subtraction, (x+ 2q)− y. Since x is an unsigned 16-bit integer, the
maximum value that x can take without causing overflow in the addition is
65535− 2q = 65535− 2 ∗ 12289 = 40957, where 65535 is the maximum value
of an unsigned 16-bit integer.

– Our analysis showed that the maximum value that an input to lazy Barrett
reduction can take is 39319.

The first observation suggests that there is no need to apply Barrett reduction
before the value reaches 40957, while from the second one we know that the
input to lazy Barrett reduction is at most 39319. Therefore, we can omit one
more reduction before we need to reduce the value to 14 bits. Since each stage
has 512 additions, and we have reduced the number of stages where lazy Barrett
reduction is applied from 5 to 3, in total we are able to remove 2 ∗ 512 Barrett
reductions. The actual speedup over our previous work is summarized in Table 3.
On AVX2, the improved lazy reduction brought good speedup (14%) compared
to the baseline, while on AVX512 the speedup is modest (1.5%).

Table 3. Speedup by the improved lazy reduction (CPU: Intel Core i7-1065G7)

Cycle counts Speedup

AVX2 baseline 5398
AVX2 backend + improved lazy reduction 4744 14%
AVX512 baseline 4381
AVX512 backend + improved lazy reduction 4317 1.5%

The interval estimated by Frama-C is not precise enough to derive the same
conclusion as above: Frama-C computed the maximum value an input to lazy
Barrett reduction can take to be 40959, which is slightly bigger than the hard
threshold of 40957 required for safely enabling the optimization above. This
difference in bounds comes from the increased precision in our implementation
of lifted Barrett reduction: Our analysis shows that the maximum value after
interval subtraction is 14743, in contrast to 16383 computed by Frama-C. The
difference in the precision, 16383− 14743, is equal to 40959− 39319, that is the
difference in the maximum values an input to lazy Barrett reduction can take.

As a sanity check, we confirmed that our analysis fails to verify the assertions
if we omit one more Barrett reduction from our code. We also tested the gen-
erated C program with the improved lazy reduction on 10000 randomly chosen
concrete values as an input, and confirmed that all outputs were correct with
respect to the DFT formula, and that each output belongs to the corresponding
interval computed by our interval analysis.

5 Verifying functional correctness

The goal is to show that the output computed by the optimized NTT program
is equivalent to the one computed by DFT. We first discuss the first attempt
which did not work out, and then explain the final solution we developed.

5.1 Naive approach

One straightforward but naive approach is to translate the entire NTT program
into a formula in the bit-vector theory [16], and verify using an SMT solver
the equivalence of the formula and the one obtained from the DFT formula.
The translation to a formula is easily done by symbolically computing the NTT
program in the bit-vector theory.

This approach did not work, since the resulting formulas were so large that
Z3, the SMT solver we used, did not terminate after more than six hours and
before it ran out of memory. We also tried replacing complicated implementations
of modular reductions with the naive ones using the modulo operator (bv urem

in SMT-LIB), but the end-to-end verification was still not tractable.

5.2 Decomposition of verification task

A natural idea to overcome the difficulty of verifying a program like optimized
NTT, which has both low-level details and a high-level algorithmic structure, is
to decompose the original verification problem into several components, in a way
that separate verification of each component would imply functional correctness
of the whole program. We give an overview of the decomposition here; a more
detailed account on the whole verification process is shown in Appendix A.

Recall the pseudocode in Algorithm 2. Our interval analysis in Section 4 has
shown that, on an end-to-end execution of the NTT program, there will be no
possibility of integer overflow. This means that, to verify program equivalence
modulo q, we can replace lazy reduction by an eager one that always applies
Barrett reduction after addition. This simplifies the original psuedocode on the
left of Fig. 1 to the one on the right.

u = a[k + j]
t = montgomery multiply reduce(...)
if s mod 2 == 0 then

a[k + j] = barrett reduce(u+ t)
else

a[k + j] = u+ t
end if
a[k + j +m/2] = barrett reduce(u+ 2q − t)

u = a[k + j]
t = montgomery multiply reduce(...)
a[k + j] = barrett reduce(u+ t)
a[k + j +m/2] = barrett reduce(u+ 2q − t)

Fig. 1. Simplifying the lazy reduction (left) to the eager one (right)

The next step for simplification is to replace low-level implementations of
modular arithmetic with much simpler operations. For this purpose, we need to

prove correctness of Barrett reduction and Montgomery multiplication by (u +

t) % q = csub(barrett reduce(u + t)) for Barrett reduction and similarly
for Montgomery multiplication10. We describe our verification procedure in Sec-
tion 5.3. The simplified arithmetic operations, represented by +′, −′, and ∗′
in Fig. 2, are interpreted as symbolic operations on a finite field with built-in
modular arithmetic.

u = a[k + j]
t = a[k + j +m/2] ∗′ Ω[o+ j]
a[k + j] = u +′ t
a[k + j +m/2] = u −′ t

Fig. 2. Simplified butterfly computation on a finite field

Section 5.4 describes how such symbolic operations facilitate equivalence
checking against the DFT formula. Since all low-level concerns have been re-
solved until this point, we can focus on the algorithmic aspect of the NTT
program.

5.3 Verifying modular-reduction algorithms

We have verified the equivalence of Barrett reduction and Montgomery multi-
plication implementations against the naive approach of using a built-in modulo
operator (the % operator in C). We encode both approaches into Z3 formulas us-
ing the bit-vector theory, and check their equivalence. For example, Montgomery
multiplication is implemented in the DSL as follows:

let montgomery_multiply_reduce x y =

let mlo = mullo x y in

let mhi = mulhi x y in

let mlo_qinv = mullo mlo (const Param.qinv) in

let t = mulhi mlo_qinv (const Param.q) in

let carry = not_zero mlo in

let res = mhi %+ t %+ carry in

csub res

Listing 2: Montgomery multiplication implementation from [19]

We provide an implementation of the domain abstraction that, together with
the direct evaluation of DSL terms by the host language, translates the DSL ex-
pression into a bit-vector formula. All DSL constructs required for Montgomery
multiplication have a direct counterpart in the bit-vector theory, except for the
high-product instruction mulhi which can be emulated easily11.

10 The symbol = represents the exact equality on integers. The additional conditional
subtraction is necessary since the outputs of Barrett reduction can be larger than q.

11 Refer to our source code for details on the translation from DSL to Z3 formulas.

By these ingredients, we can apply Z3 to verify Montgomery multiplication.
More concretely, let opt formula and ref formula be the Z3 formulas for the
implementation in Listing 2 and the naive multiplication followed by a mod-
ulo operation, respectively. We ran Z3 to check unsatisfiability of the formula
opt formula 6= ref formula, which has been successful. Similarly, correctness
of the Barrett reduction has been proved using Z3.

5.4 Proving correctness of the simplified NTT program

Our strategy for verifying the simplified NTT program is based on the follow-
ing observation: Since DFT is a linear transformation, each output element can
be represented as a linear polynomial on input variables. Since NTT also rep-
resents a linear transformation, we only have to prove that all coefficients on
each variable in the two polynomials coincide up to congruence12. Therefore,
we symbolically execute the simplified NTT program to compute such a linear
polynomial for all output elements, and test if all coefficients are congruent to
the corresponding rows of the DFT matrix. Thanks to the simplification stated
before, the polynomial is truly linear in the sense that it consists of addition,
subtraction, and multiplication by a constant (no explicit modulo operations)
only. We can extract coefficients from the polynomials and compare them.

To make this idea concrete, we introduce a domain implementation that
represents symbolic computations on polynomials:

module D_symbolic : Domain = struct

type exp =

| Const of int

| Sym of string

| Add of exp * exp

| Sub of exp * exp

| Mul of exp * exp

type t = exp

let add x y = Add(x, y)

...

end

When we symbolically execute the NTT program using this domain, with an
array of symbolic integers (represented by Sym constructor of exp type above)
as an input, we end up with an output array whose i-th element represents all
computations that contribute to the i-th output. For each output, we simplify
such a nested polynomial expression to obtain a linear polynomial, and compare
the coefficients array with the corresponding row of the DFT matrix. We have
confirmed that, for all output elements, our verification succeeded in establishing
congruence of the NTT outputs and the DFT matrix.

12 The coefficients computed by the NTT program may contain negative values due to
subtraction in the butterfly operation.

Note how the two abstractions, the language and domain abstractions, simpli-
fied equivalence checking via symbolic computation: By composing the language
interpretation that evaluates DSL terms directly in the host language, and the
domain implementation representing symbolic operations, symbolic computation
of NTT is naturally realized. Such a high degree of program abstraction would
be nearly impossible if we would have operated on the low-level C program.

6 Discussion

Why a ”unified” approach? In a traditional approach where generated code
is verified directly, one has to reconstruct the original high-level structure in
a DSL program from the generated low-level program, before doing any kind
of analysis or verification. Even if such reconstruction was possible, we believe
that the kind of program abstraction we rely on, such as the reinterpretation
of the DSL program for symbolically computing polynomials, is extremely hard
to accomplish automatically. In our unified approach, a verification procedure
starts with a high-level DSL program. This makes the verification task simpler
and paves a way for verifying more challenging properties than those handled
by off-the-shelf automatic tools. At the same time, since program generation
is based on the same DSL program, all interesting low-level concerns in the
generated program are taken into account during verification.

The downsides of our approach are in (1) not verifying the generated code
directly and (2) relying on unconventional trusted base13. Since we regard verifi-
cation of the DSL program as a proxy for verification of the generated program,
there is always a question on the gap between what is generated and what is
verified. In addition, our approach assumes that our implementation of the two
DSL interpretations, the program generator and the verifier, correctly respects
the semantics of the original DSL program14.

Despite the major disadvantages above, we believe that our approach is a
promising step toward verifying functional correctness of a low-level, highly op-
timized program. We view the pros and cons of our approach as a trade-off
between more possibilities for verification and larger trusted base.

7 Related Work

Earlier work on verifying FFT focused on establishing equivalence of a textbook-
style, recursive formulation of the FFT algorithm against DFT using a proof as-
sistant [12,2,8]. Recently, Navas et al. [21] verified the absence of integer overflow
in an implementation of NTT[17]. However, verification of functional correctness

13 See Appendix A for our trusted base.
14 However, note that both interpretations are based on the tagless-final style and thus

they operate on DSL constructs at the most primitive level (such as translating the
DSL for loop to that of OCaml or C). Therefore, we believe that their correctness is
a reasonable assumption.

has been largely left open. To the best of our knowledge, there has been no prior
work on verifying functional correctness of a highly optimized NTT implemen-
tation.

Verified implementations of low-level cryptographic primitives have been an
active research topic [4,11,26,22]. Existing work targets those primitives that are
already used widely, for example those in the Internet protocols, and proposes
optimized implementations that are thoroughly verified using Coq or F*. We
think that such full-scale verification is realistic only for primitives that are
important today and whose implementations are less stable, due to its high cost:
For bleeding-edge primitives such as NTT, more lightweight approaches like ours
would be more accessible and useful for practitioners.

Outside of cryptography, the pioneering work by Amin et al. [5] considered
correctness issues in the context of staging and generative programming. Their
approach is based on generating C code together with correctness contracts as
ACSL specifications, which can be verified by an external tool. Since they verify
the generated code directly, they do not have to trust the code generator or a
verifier for the DSL program. Although the approach of Amin et al. has a major
advantage in this respect, what they can verify are fundamentally limited by the
capability of external tools operating on the generated C program. For example,
the case studies in [5] are limited to verifying safety properties such as memory
safety of an HTTP parser or functional correctness of simple programs such as
sorting. Our approach is complementary to theirs in the sense that we can verify
more challenging properties in exchange for bigger trusted computing base.

8 Conclusion

We have proposed an approach for giving correctness assurance to the gener-
ated code in the context of generative programming. Integration of code gener-
ation and verification under one DSL framework enabled us to (1) incorporate
an abstract interpretation to prove, for instance, the absence of integer overflow,
and (2) decompose the end-to-end correctness verification problem into low-level
and high-level parts, each of which can be verified separately. Our approach is
lightweight in the sense that we make use of automation via abstract interpreta-
tion and symbolic computation. We have applied our approach to a highly opti-
mized implementation of NTT, which is a key building block of next-generation
cryptographic protocols, and successfully verified its functional correctness.

For future work, we plan to generalize our approach so that existing schemes
other than NewHope or new ones can be similarly reimplemented and verified.
We are also interested in exploring whether our unified approach is applicable
to other domains, outside of NTT or cryptography.

Acknowledgments. We thank Hiroshi Unno for the helpful discussion.
Feedback from anonymous reviewers helped improve this paper and is greatly
appreciated. The second author is supported in part by JSPS Grant-in-Aid for
Scientific Research (B) 18H03218.

References

1. ANSI/ISO C specification language. https://frama-c.com/html/acsl.html
2. Akbarpour, B., Tahar, S.: A methodology for the formal verification of FFT algo-

rithms in HOL. In: Hu, A.J., Martin, A.K. (eds.) Formal Methods in Computer-
Aided Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA,
November 15-17, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3312,
pp. 37–51. Springer (2004). https://doi.org/10.1007/978-3-540-30494-4 4

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange: A
new hope. In: Proceedings of the 25th USENIX Conference on Security Symposium.
p. 327–343. SEC’16, USENIX Association, USA (2016)

4. Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V.,
Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.Y.: Jasmin: High-assurance
and high-speed cryptography. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. p. 1807–1823. CCS
’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3133956.3134078

5. Amin, N., Rompf, T.: LMS-Verify: abstraction without regret for verified sys-
tems programming. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. pp. 859–873. ACM (2017).
https://doi.org/10.1145/3009837.3009867

6. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Proceedings on Advances in
Cryptology—CRYPTO ’86. p. 311–323. Springer-Verlag, Berlin, Heidelberg (1987)

7. Bühler, D.: Structuring an Abstract Interpreter through Value and State Abstrac-
tions:EVA, an Evolved Value Analysis for Frama-C. (Structurer un interpréteur
abstrait au moyen d’abstractions de valeurs et d’états :Eva, une analyse de valeur
évoluée pour Frama-C). Ph.D. thesis, University of Rennes 1, France (2017),
https://tel.archives-ouvertes.fr/tel-01664726

8. Capretta, V.: Certifying the Fast Fourier Transform with Coq. In: Boulton, R.J.,
Jackson, P.B. (eds.) Theorem Proving in Higher Order Logics, 14th International
Conference, TPHOLs 2001, Edinburgh, Scotland, UK, September 3-6, 2001, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2152, pp. 154–168. Springer
(2001). https://doi.org/10.1007/3-540-44755-5 12

9. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009). https://doi.org/10.1017/S0956796809007205

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

11. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple High-Level
Code for Cryptographic Arithmetic - With Proofs, Without Compromises. In: 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019. pp. 1202–1219. IEEE (2019). https://doi.org/10.1109/SP.2019.00005

12. Gamboa, R.A.: The Correctness of the Fast Fourier Transform: A Structured Proof
in ACL2. Form. Methods Syst. Des. 20(1), 91–106 (Jan 2002), https://doi.org/
10.1023/A:1012912614285

13. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software Speed Records for
Lattice-Based Signatures. In: Gaborit, P. (ed.) Post-Quantum Cryptography. pp.
67–82. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

https://frama-c.com/html/acsl.html
https://doi.org/10.1007/978-3-540-30494-4_4
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3009837.3009867
https://tel.archives-ouvertes.fr/tel-01664726
https://doi.org/10.1007/3-540-44755-5_12
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1023/A:1012912614285
https://doi.org/10.1023/A:1012912614285

14. Kiselyov, O., Biboudis, A., Palladinos, N., Smaragdakis, Y.: Stream fusion, to com-
pleteness. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages. p. 285–299. POPL 2017, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3009837.3009880

15. Krishnaswami, N.R., Yallop, J.: A typed, algebraic approach to parsing. In: Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. p. 379–393. PLDI 2019, Association for Computing Ma-
chinery, New York, NY, USA (2019). https://doi.org/10.1145/3314221.3314625

16. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of
View, Second Edition. Texts in Theoretical Computer Science. An EATCS Series,
Springer (2016). https://doi.org/10.1007/978-3-662-50497-0

17. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) Cryptology and
Network Security. pp. 124–139. Springer International Publishing, Cham (2016)

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp.
1–23. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

19. Masuda, M., Kameyama, Y.: FFT program generation for Ring LWE-based cryp-
tography. In: Nakanishi, T., Nojima, R. (eds.) Advances in Information and Com-
puter Security. pp. 151–171. Springer International Publishing, Cham (2021)

20. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519–521 (1985)

21. Navas, J.A., Dutertre, B., Mason, I.A.: Verification of an optimized NTT algorithm.
In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.) Software
Verification. pp. 144–160. Springer International Publishing, Cham (2020)

22. Protzenko, J., Parno, B., Fromherz, A., Hawblitzel, C., Polubelova, M., Bharga-
van, K., Beurdouche, B., Choi, J., Delignat-Lavaud, A., Fournet, C., Kulatova,
N., Ramananandro, T., Rastogi, A., Swamy, N., Wintersteiger, C.M., Zanella-
Beguelin, S.: Evercrypt: A fast, verified, cross-platform cryptographic provider.
In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 983–1002 (2020).
https://doi.org/10.1109/SP40000.2020.00114

23. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. IACR Cryptol. ePrint Arch. 2018, 39 (2018)

24. Shaikhha, A., Klonatos, Y., Koch, C.: Building efficient query engines
in a high-level language. ACM Trans. Database Syst. 43(1) (Apr 2018).
https://doi.org/10.1145/3183653

25. Wei, G., Chen, Y., Rompf, T.: Staged abstract interpreters: fast and modu-
lar whole-program analysis via meta-programming. Proc. ACM Program. Lang.
3(OOPSLA), 126:1–126:32 (2019). https://doi.org/10.1145/3360552

26. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*:
A verified modern cryptographic library. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. p. 1789–1806.
CCS ’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3133956.3134043

Appendix A Programs to be verified and their semantics

The verification procedure in Section 5 is a series of step-by-step simplifications
of programs and their correctness proofs. The following table lists the programs
and the domain interpretations in the procedure.

https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1145/3183653
https://doi.org/10.1145/3360552
https://doi.org/10.1145/3133956.3134043

program domain arithmetic operation

P0 DFT formula (1) Zq arithmetic operations in Zq

P1 DSL program in Section 2.2 Zq arithmetic operations in Zq

P2 the same as P1 unsigned int arithmetic with modulo-q

P3 the same as P1 unsigned int low-level operations

P4 P1 + lazy reduction unsigned int low-level operations

P5 generated C code unsigned int in C arithmetic operations in C

P0 is the DFT formula (1) in Section 2.1. P1, P2, and P3 are the DSL program
whose inner-most loop was given in Section 2.2 with different domain interpreta-
tions. For the interpretation of DSL, we take the natural ’interpreter’ semantics,
which is essentially the same as the module R in Section 2.2.

P1, P2, and P3 differ in the domain interpretations. For P1, the domain is
interpreted as Zq. For P2, the domain is interpreted as the set of 16bit unsigned
integers, and the arithmetic operations are those for unsigned integers followed
by the modulo-q operation. To treat multiplication within 16 bits, we use mullo

and mulhi in Section 3. For P3, the domain remains the same as P2, while
the arithmetic operations are replaced by low-level operations such as Barrett
reduction. The semantics of unsigned integers and their operations is specified
by the bit-vector theory [16]. P4 is the same as P3 except that it employs lazy
reduction in Section 3.

P5 is the C code generated by interpreting the DSL constructs as generators
for strings that represent the corresponding C code. This process (called off-
shoring in the literature) is conceptually a trivial injection, however, formalizing
it involves the semantics of the C language and is beyond the scope of this paper,
and we put the equivalence of P4 and P5 into our trusted base.

Besides it, our trusted base includes correctness of our interval analysis, sym-
bolic computation, and the implementations of helper functions such as mullo

and mulhi. With this trusted base as well as the language and domain inter-
pretations explained above, this paper has verified that, for 0 ≤ k ≤ 3, Pk is
extensionally equal (modulo q) to Pk+1 (written Pk =ext Pk+1): P3 =ext P4 and
P1 =ext P2 in Section 4, P2 =ext P3 in Section 5.3, and P0 =ext P1 in Section 5.4.

	Unified Program Generation and Verification: A Case Study on Number-Theoretic Transform

