Staging
Logic in Computer Software Type-safe code generation as meta-programming.

@ What is safety ?
Yukiyoshi Kameyama @ How is it guaranteed ?

@ Why is it good ?

Dept. of Computer Science, Univ. of Tsukuba

@ Types as a means to guarantee safety.

Week 5
@ Safety, Reliability and Dependability.

Safey in Staged Programs Dangerous Program

Dangerous (not safe) and well-typed programs in the original

Dangerous (not safe) and ill-typed program: MetaOCaml.
<x + 10> let x = ref 10;; ==> referenece (pointer) to 10
let x = 5 in <x + 10> ;; 'x ;5 == 10
X = Ix % 2 ;; => ()
Safe and well-typed program: Ix ;; ==> 20
< -> x + 10> ;;
<iuil % _ 5X, 10+ 1(’); N let x = ref <10> in
evx=odnx ’? let _ =< funy -> "(x :=<y>; <0O>); 20> in
But there are P x
@ Safe and ill-typed programs. ==
<y>

e Dangerous (not safe) and well-typed programs. (Problem!).
For an example in the latest MetaOCaml, see the paper [Shan

Yukiyoshi Kameyama Logic in Computer Software Yukiyoshi Kameyama Logic in Computer Software

Safety in MSP Safety in MSP, contd

What are implied by type safety in MSP ?

Safety here means type safety. If 't e: 7 is derivable, then
. . . @ no type error in e; compliation of e does not cause an error.
@ Subject Reduction Property (Preservation Property) yp i P)))
@ no type error during the execution of e; for instance, we will

® Progress Property never add a string with a code.

Subjec,t Reduction: if I " e : 7 is derivable, and e ~* €/, then o If the computation of e terminates and T = (o), then its
n . H H . .
"¢ : 7 is derivable. result is (e’). (code is generated.)
Progress: if FO e : 7 is derivable, and e is not a value, then e ~ €’ ;- .
] e and €’ is well-typed. (generatd code is well typed)
for some €. . ,
If e is run €, then type safety guarantees the absence of type error
Well-typed programs do not go wrong’. during the exeuction of the generated code from e’
"Well-typed code-generators as well as codes generated from them
do not go wrong”.

Safety of generated codes Applications of Staging (GE-1)

A generic yet efficient algorithm [Jacques Carette 2005 “Gaussian
Elimination: a case study in efficient genericity with MetaOCaml”,

Static safety guarantee of no syntax error, no type error and no

scope error (no free variables) in generated codes: in SCP].
o Maple: a large commercial computer algebra system.
Approach no syntax error | no type/scope error e Gaussian Elimination (GE) is an algorithm on square matrices.
Strings as codes NG NG @ Maple contains 35 different implementations of GE with
Lisp Quasiquotation OK NG parameters such as:
C+ template OK NG e Domain of matrix elements: Z_, Q, Z;, Z[x], Q(x), Q(«), and
float, --- (20 different domains).
Template Haskell OK NG o Fraction-free (or remainder-free) division or not.
Scala LMS OK NG o Representation of matrices: array of arrays, one-dimensional
MetaOCaml OK OK array, hash table, and indexing is done in C-style or

FORTRAN-style.

“ . " e Length measure for pivoting.
Note. Safety means “no compile errors for generated codes”, and e Output choices.

it does NOT imply the generated codes are correct. o Normalization and zero-equivalence.
@ Parameter choices are not independent and more design
choices: 35 different implementations, still share the same

Yukiyoshi Kameyama Logic in Computer Software Yukiyoshi Kameyama Logic in Computer Software

Applications of Staging (GE-2) Applications of Staging (GE-3)

Question: is it enough to represent all 35 implementations by one
generic program 7

No, definitely.

Question: is it OK to maintain all 35 implementations ? i . . L
@ Maple is a commercial system, and efficiency is important.

Probably no.
let ge_high findpivot swap zerobelow amn = ...

@ algorithm change may affect all implementations. if (domain = int) thenm ...

@ some implementation may not utilize optimization used in else if
other implementations. if (fraction_free) then ...
@ we need abstraction (for reusability, maintainability, and else
reliability). let new_matrix = add_row (i, j, old_matrix) in ...

Many places to be improved:
@ Conditionals and Case analysis are bad for efficiency.
e Function calls should be eliminated by inlining (if we know
which function is called statically).

Yukiyoshi Kameyama Logic in Computer Software Yukiyoshi Kameyama Logic in Computer Software

Applications of Staging (GE-4) Applications of Staging (DSL interpreter-1)

) _ Domain-specific language (DSL) is ubiquitous. (vs.
Solution: use staging. General-purpose programming languages):
e We write only one (generic) program in MetaOCaml, and
maintain this code only.

@ database access

_ _] @ parser generator (e.g., lex/yacc)

e By staging, we generate 35 (and possibly more) different o
. . . @ wiki

codes using specific parameters for each choice.

e (according to wikipedia) DSL for life insurance policies,

@ The package (commercial product) contains these codes. ¢ i) .
combat simulation, salary calculation, billing, ..

@ The generic program is easy to read, but bad in efficiency.
@ The generated codes are hard to read, but good in efficiency. If we have enough resource (time, man-power etc.), we can
develop a compiler for each DSL, but often it's not possible (and

Moreover, in the MetaOCaml-style staging, the generator
not necessary).

(program) looks like the generated codes.
We usually write an interpreter of DSL.

Yukiyoshi Kameyama Logic in Computer Software Yukiyoshi Kameyama Logic in Computer Software

Applications of Staging (DSL interpreter-2) Applications of Staging (DSL interpreter-3)

Staging will help the situation. We can generate the code (in the
A typical DSL interpreter (written in OCaml): general purpose language) for a program in DSL, then run it.

We only have to interpret each program once.
let rec eval exp env =

match exp with

| Int i -> i let rec eval exp env =

| Add el e2 -> (eval el env) + (eval e2 env) match exp with

| If el e2 e3 -> if (eval el env) then ... | Int i -> <i>
| Add el e2 -> <"(eval el env) + “(eval e2 env)>
| If el e2 e3 -> <if “(eval el env) then ...>

interpretive overhead: if we run the power function (or any
recursive function), we interpret the same function many times.

(power 1000 needs to be interpreted 1000 times, rather than once.) Walid Taha 2005, “A Gentle Introduction to Multi-Stage
Programming” reported 5 - 20 times speed up of staged DSL
interpreter.

Applications of Staging (High Performance Code) Evaluation Criteria of Shonan Challenge

Aktemur, Kameyama, Kiselyov,Shan [2013], “Shonan Challenge for

Generative Programming”: o efficiency
@ Based on our technique for generating efficient codes using o reusability/maintainability
MetaOCaml-like staging, e safety (and possibly verifiability)
@ we propose a set of challenging programs in @ ease of use
high-performance computing (such as computer algebra, fast o and more

Fourier transform, hidden Markov model etc.),

@ and ask Staging people to provide good solutions for them. Still hot and active research area.

Yukiyoshi Kameyama Logic in Computer Software Yukiyoshi Kameyama Logic in Computer Software

gbobooobobboobooboboobobooboobooon
gboooboon

e J00DDOOUDDUODUDDOOOIDDOOO (MetaOCaml
O0o0o0o0oo0)booooo(l)ooooooooooooo
gboooobobboobuoobobooboboobon
00000()o0oo0o0oUooooUooUoooo
ubobooboboooboboobobooboboooon
ubooooboooooog

e DO ODOODOODODLOOODLODLOODLDODLOODODOO
0000000000000 (Dooooooooooo)o
gbobooboboobobooboboobobon
ubooooobooboobobooooooobobobooooo
gbooooogon

Yukiyoshi Kameyama Logic in Computer Software

