
.

.

.

.
Logic in Computer Software

Yukiyoshi Kameyama

Dept. of Computer Science, Univ. of Tsukuba

Week 5

Yukiyoshi Kameyama Logic in Computer Software .

Staging

Type-safe code generation as meta-programming.

What is safety ?

How is it guaranteed ?

Why is it good ?

Types as a means to guarantee safety.

Safety, Reliability and Dependability.

Yukiyoshi Kameyama Logic in Computer Software

.

Safey in Staged Programs

Dangerous (not safe) and ill-typed program:

<x + 10> ;;

let x = 5 in <x + 10> ;;

Safe and well-typed program:

<fun x -> x + 10> ;;

<let x = 5 in x + 10> ;;

But there are

Safe and ill-typed programs.

Dangerous (not safe) and well-typed programs. (Problem!).

Yukiyoshi Kameyama Logic in Computer Software .

Dangerous Program

Dangerous (not safe) and well-typed programs in the original
MetaOCaml.

let x = ref 10;; ==> referenece (pointer) to 10

!x ;; ==> 10

x := !x * 2 ;; ==> ()

!x ;; ==> 20

let x = ref <10> in

let _ = < fun y -> ~( x := <y> ; <()>); 20> in

! x

==>

<y>

For an example in the latest MetaOCaml, see the paper [Shan
2010].

Yukiyoshi Kameyama Logic in Computer Software



.

.

Safety in MSP

Safety here means type safety.

Subject Reduction Property (Preservation Property)

Progress Property

Subject Reduction: if Γ ⊢n e : τ is derivable, and e ⇝∗ e ′, then
Γ ⊢n e ′ : τ is derivable.
Progress: if ⊢0 e : τ is derivable, and e is not a value, then e ⇝ e ′

for some e ′.

”Well-typed programs do not go wrong”.

Yukiyoshi Kameyama Logic in Computer Software .

Safety in MSP, contd

What are implied by type safety in MSP ?

If Γ ⊢ e : τ is derivable, then

no type error in e; compliation of e does not cause an error.

no type error during the execution of e; for instance, we will
never add a string with a code.

If the computation of e terminates and τ = ⟨σ⟩, then its
result is ⟨e ′⟩. (code is generated.)

and e ′ is well-typed. (generatd code is well typed)

If e is run e ′, then type safety guarantees the absence of type error
during the exeuction of the generated code from e ′.

”Well-typed code-generators as well as codes generated from them
do not go wrong”.

Yukiyoshi Kameyama Logic in Computer Software

.

Safety of generated codes

Static safety guarantee of no syntax error, no type error and no
scope error (no free variables) in generated codes:

Approach no syntax error no type/scope error

Strings as codes NG NG

Lisp Quasiquotation OK NG

C++ template OK NG

Template Haskell OK NG

Scala LMS OK NG

MetaOCaml OK OK

Note. Safety means “no compile errors for generated codes”, and
it does NOT imply the generated codes are correct.

Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (GE-1)

A generic yet efficient algorithm [Jacques Carette 2005 “Gaussian
Elimination: a case study in efficient genericity with MetaOCaml”,
in SCP].

Maple: a large commercial computer algebra system.
Gaussian Elimination (GE) is an algorithm on square matrices.
Maple contains 35 different implementations of GE with
parameters such as:

Domain of matrix elements: Z, Q, Zi , Z[x], Q(x), Q(α), and
float, · · · (20 different domains).
Fraction-free (or remainder-free) division or not.
Representation of matrices: array of arrays, one-dimensional
array, hash table, and indexing is done in C-style or
FORTRAN-style.
Length measure for pivoting.
Output choices.
Normalization and zero-equivalence.

Parameter choices are not independent and more design
choices: 35 different implementations, still share the same
algorithm. Yukiyoshi Kameyama Logic in Computer Software



.

.

Applications of Staging (GE-2)

Question: is it OK to maintain all 35 implementations ?

Probably no.

algorithm change may affect all implementations.

some implementation may not utilize optimization used in
other implementations.

we need abstraction (for reusability, maintainability, and
reliability).

Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (GE-3)

Question: is it enough to represent all 35 implementations by one
generic program ?

No, definitely.

Maple is a commercial system, and efficiency is important.

let ge_high findpivot swap zerobelow a m n = ...

if (domain = int) then ...

else if ....

if (fraction_free) then ...

else ...

let new_matrix = add_row (i, j, old_matrix) in ...

Many places to be improved:

Conditionals and Case analysis are bad for efficiency.

Function calls should be eliminated by inlining (if we know
which function is called statically).

Yukiyoshi Kameyama Logic in Computer Software

.

Applications of Staging (GE-4)

Solution: use staging.

We write only one (generic) program in MetaOCaml, and
maintain this code only.

By staging, we generate 35 (and possibly more) different
codes using specific parameters for each choice.

The package (commercial product) contains these codes.

The generic program is easy to read, but bad in efficiency.

The generated codes are hard to read, but good in efficiency.

Moreover, in the MetaOCaml-style staging, the generator
(program) looks like the generated codes.

Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (DSL interpreter-1)

Domain-specific language (DSL) is ubiquitous. (vs.
General-purpose programming languages):

database access

parser generator (e.g., lex/yacc)

wiki

(according to wikipedia) DSL for life insurance policies,
combat simulation, salary calculation, billing, ..

If we have enough resource (time, man-power etc.), we can
develop a compiler for each DSL, but often it’s not possible (and
not necessary).

We usually write an interpreter of DSL.

Yukiyoshi Kameyama Logic in Computer Software



.

.

Applications of Staging (DSL interpreter-2)

A typical DSL interpreter (written in OCaml):

let rec eval exp env =

match exp with

| Int i -> i

| Add e1 e2 -> (eval e1 env) + (eval e2 env)

| If e1 e2 e3 -> if (eval e1 env) then ...

...

interpretive overhead: if we run the power function (or any
recursive function), we interpret the same function many times.
(power 1000 needs to be interpreted 1000 times, rather than once.)

Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (DSL interpreter-3)

Staging will help the situation. We can generate the code (in the
general purpose language) for a program in DSL, then run it.

We only have to interpret each program once.

let rec eval exp env =

match exp with

| Int i -> <i>

| Add e1 e2 -> <~(eval e1 env) + ~(eval e2 env)>

| If e1 e2 e3 -> <if ~(eval e1 env) then ...>

...

Walid Taha 2005, “A Gentle Introduction to Multi-Stage
Programming” reported 5 - 20 times speed up of staged DSL
interpreter.

Yukiyoshi Kameyama Logic in Computer Software

.

Applications of Staging (High Performance Code)

Aktemur, Kameyama, Kiselyov,Shan [2013], “Shonan Challenge for
Generative Programming”:

Based on our technique for generating efficient codes using
MetaOCaml-like staging,

we propose a set of challenging programs in
high-performance computing (such as computer algebra, fast
Fourier transform, hidden Markov model etc.),

and ask Staging people to provide good solutions for them.

Yukiyoshi Kameyama Logic in Computer Software .

Evaluation Criteria of Shonan Challenge

efficiency

reusability/maintainability

safety (and possibly verifiability)

ease of use

and more

Still hot and active research area.

Yukiyoshi Kameyama Logic in Computer Software



.

.

Report

これまでの授業を参考にして、以下の各項目について、自分の考
えを述べよ。

「プログラムによるコード生成」という考え方 (MetaOCaml
風でなくてよい)について，(1) 自分の研究や趣味に関連する
分野で，どのように使われているか，あるいは使われている
と良いか，(2) また，コード生成のためのどのような言語，
ライブラリ，プログラミング環境があれば良いとおもうか，
などを，自由に書きなさい．

「プログラム言語の型システムの役割」について、自分がこ
れまで作成したソフトウェア (あるいは作成中のシステム)に
おいて、どのように使われているか，役に立ったか立たな
かったか，どういう風な型システムであれば嬉しいか，など，
自由に書きなさい．

Yukiyoshi Kameyama Logic in Computer Software .

. .


