
.

.

.

.
Logic in Computer Software

Yukiyoshi Kameyama

Dept. of Computer Science, Univ. of Tsukuba

Week 4

Yukiyoshi Kameyama Logic in Computer Software .

Summary

“Staging”: code generation by programs (a kind of
meta-programming)

Naive approach: strings as codes

Preproessor approach: quasi-quotation (in Lisp/Scheme),
C++ template

Native support by programming languages: MetaOCaml,
Scala/LMS, (template Haskell)

refers to type-safe meta-programming, implemented in
MetaOCaml (only)

Today:

Safety of codes in staging (in particular, MetaOCaml-style
staging)

Application of staging

Summary

Yukiyoshi Kameyama Logic in Computer Software

.

Example (1)

What is the type of the following program ?

<fun x -> x + 10>

or

‘(lambda (x) (+ x 10))

(int -> int) code

or, (’a, int -> int) code in MetaOcaml

Yukiyoshi Kameyama Logic in Computer Software .

Example (2)

What is the type of the following program ?

<fun x -> ~x + 10>

or

‘(lambda (x) (+ ,x 10))

Error: Wrong level: variable bound at level 1 and used at level 0

Why ?

‘(lambda (x) (+ ,x 10))

is exactly the same as (or rewritten at the input time to):

(list ’lambda ’(x) (list ’+ x ’10))

Namely, x is a free variable.

Yukiyoshi Kameyama Logic in Computer Software

.

.

Example (2)-added

But we sometimes want to define a function now (at the
code-generation time), and to use it later (when the generated
code is used and executed).

let sqr x = x * x;;

let rec s_power = <.... sqr>;;

We define the function sqr now, and use it in future .
MetaOCaml allows it: Cross-stage persistence (CSP).

Yukiyoshi Kameyama Logic in Computer Software .

Example (2)-added (cont’d)

let sqr x = x * x;;

val sqr : int -> int = <fun>

let rec s_power n x =

if n = 0 then x

else if (n mod 2)=0 then .< sqr .~(s_power (n/2) x)>.

else .< .~x * .~(s_power (n-1) x)>.;;

val s_power : int -> int code -> int code = <fun>

(Ignore periods before/after staging constructs).

sqr has type int -> int, but is used as having the type
(int -> int) code.

Yukiyoshi Kameyama Logic in Computer Software

.

Example (3)

What is the type of the following program ?

fun y -> <fun x -> ~y + 10>

or

(lambda (y) ’(lambda (x) (+ ,y 10)))

int -> ((int -> int) code)

Yukiyoshi Kameyama Logic in Computer Software .

Example (4)

What is the type of the following program ?

fun f -> <fun x -> ~(f <x + 10>)>

or

(lambda (f) ’(lambda (x) ,(f ’(+ x 10))))

(int code -> int code) -> ((int -> int) code)

Yukiyoshi Kameyama Logic in Computer Software

.

.

Example (4)-added

Is there any real application of such a program (having a
complicated type) ?
Yes, we often use such patterns in code generation. (cf. Design
Pattern):

let eta = fun f -> .<fun x -> .~(f .<x + 0>.) + 0>.;;

eta: (int code -> int code) -> (int -> int) code = <fun>

let rec s_power n x = ...;;

s_power : int -> int code -> int code = <fun>

(s_power 13 .<x>. would be .<x * ...>.

let s_power13 = eta (s_power 13);;

val s_power13 : (int -> int) code = <fun>

let p13 = .! s_power13 in p13 2;; (*compiled*)

_ : int = 8192

Yukiyoshi Kameyama Logic in Computer Software .

Safety of generated codes

Static safety guarantee of no syntax error, no type error and no
scope error (no free variables) in generated codes:

Approach no syntax error no type/scope error

Strings as codes NG NG

Lisp Quasiquotation OK NG

C++ template OK NG

Template Haskell OK NG

Scala LMS OK NG

MetaOCaml OK OK

Note. Safety means “no compile errors for generated codes”, and
it does NOT imply the generated codes are correct.

Yukiyoshi Kameyama Logic in Computer Software

. .

