
.

.

.

.

ソフトウェア論理
Logic in Computer Software

Yukiyoshi Kameyama

Dept. of Computer Science, Univ. of Tsukuba

Week 3

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

プログラム生成 (Program Generation)

How to represent programs (codes) as data ?

Strings

Data types for trees

Language support for code generation (Built-in data types)

(To distinguish two kinds of programs from each other, we write
“programs” for generating programs, and “codes” for generated
programs.)

This choice greatly affects the quality of programs and codes. (ease
of writing/understanding, reusability efficiency, reliability, etc.)

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

Strings as codes (1)

A standard C-program for the power function (べき乗を求める関
数):

int power (int n, int x) {

if (n == 1) {

return x;

} else if (even(n)) {

return sqr(power(n/2,x));

} else {

return x*power(n-1,x);

}

)

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Strings as codes (2)

Suppose n is known now, and x is not known now. A generator for
the power function in C-like notation:

string gen_power1 (int n, string xs) {

if (n == 1) { return xs;

} else if (even(n)) {

return concat("sqr(", gen_power1(n/2,xs), ")");

} else {

return concat(xs, "*(", gen_power1(n-1,xs), ")");

}

}

string gen_power (int n) {

return

concat("int power (int x) { return(",

gen_power1(n, "x"), ");}");

}

assuming that concat does the right job.
Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

.

Strings as codes (3)

Inner product of vectors in C-like notation:

float ip (int n, float a[], float b[]) {

int i;

float sum = 0.0;

for (i = 0; i < n; i++) {

sum += a[i] * b[i];

}

return sum;

}

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Strings as codes (4)

Suppose n is known, a and b are not known. Generator for inner
product:

string gen_ip1 (int n, int idx, string as, string bs) {

if (idx == n) return "0.0";

else return

concat(as, "[", int_to_string(idx), "] * ",

bs, "[", int_to_string(idx), "] + ",

gen_ip1(n, idx + 1, as, bs));

}

string gen_ip (int n, string as, string bs) {

return

concat("float ip (int ", as, "[], int", bs, "[]) {"

"return ", gen_ip1(n, 0, as, bs), ";", "}");

}

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

Strings as codes (5)

Sometimes, we want to generate more specialized code: Suppose n
and a are known, and b is not known.

string gen_ip1 (int n, int idx, float a[], string bs) {

if (idx == n) return "0.0";

else return

concat(float_to_string(a[idx]), " * ",

bs, "[", int_to_string(idx), "] + ",

gen_ip1(n, idx + 1, a, bs));

}

string gen_ip (int n, float a[], string bs) {

return concat("float ip (int ", bs, "[]) {"

"return ", gen_ip1(n, 0, a, bs), ";", "}");

}

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Strings as codes (summary)

Evaluation:

(+) It can be done in almost all programming languages.

(+) So, we don’t have to learn more techniques.

(-) It needs a certain (boring) rewriting of the non-generating
version

(-) It is error prone, especially when we embed codes into
code (“splicing”)

(-) It is not composable; we cannot combine one generator
with internal variables “x” and “y”, and another generator
with internal variables “x” and “z”.

(-) Sometimes (or, often) the generated codes cannot be
compiled due to type errors or unbound variables.

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

.

Data types for trees as codes (1)

Lisp/Scheme has trees as primitive data (“Symbolic expression” or
S-expression for short):

(+ 1 2) returns 3

’(+ 1 2) returns (+ 1 2)

(list (+ 1 2) (* 2 3)) returns 9

(list ’(+ 1 2) ’(* 2 3)) returns ((+ 1 2) (* 2 3))

Suitable for symbolic computation (mathematical formulas, logical
formulas, programs, XML data, sentences in natural languages
etc.)

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Data types for trees as codes (2)

Power function in Scheme:

(define (power n x)

(if (= n 1) x

(if (even n)

(sqr (power (/ n 2) x))

(* x (power (- n 1) x)))))

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

Data types for trees as codes (3)

Generator for Power function in Scheme:

(define (gen_power1 n xs)

(if (= n 1) xs

(if (even n)

(list ’sqr (gen_power1 (/ n 2) xs))

(list ’* xs (gen_power1 (- n 1) xs)))))

(define (gen_power n)

(list ’define ’(power x)

(gen_power1 n ’x)))

Slightly better than the “strings as codes” approach.
Still splicing is problematic.

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Data types for trees as codes (4)

(from the previous slide)

(define (gen_power n)

(list ’define ’(power x)

(gen_power1 n ’x)))

Generator for Power function in Scheme using quasi-quotation:

(define (gen_power n)

‘(define (power x)

,(gen_power1 n ‘x)))

Can represent splicing neatly.

Quasi-quotation is like quotation, but allows splicing.

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

.

Data types for trees as codes (5)

Evaluation:

(+) Better syntax. Ease of writing and understanding. Much
less error-prone.

(+) No overhead; runs in exactly the same speed as the one
without quasi-quotation (it is just an input-macro).

(-) Programming language (or its preprocessor) must support
it.

(-) Still not composable; we cannot combine one generator
with internal variables “x” and “y”, and another generator
with internal variables “x” and “z”.

(-) Sometimes (or, often) the generated codes cannot be
compiled due to unbound variables.

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Language support (built-in data types) (1)

Power in OCaml (a dialect of ML):

let rec power n x =

if n=1 then x

else if (even n) then

sqr (power (n / 2) x)

else x * (power (n-1))

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

Language support (built-in data types) (2)

Generator for Power:

let rec gen_power1 n xs =

if n=1 then xs

else if (even n) then

‘(sqr ,(gen_power1 (n / 2) xs))

else ‘(,xs * ,(gen_power1 (n - 1) xs))

let gen_power n =

‘(fun x -> ,(gen_power1 n ‘x))

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Language support (built-in data types) (2’)

Generator for Power:

let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

<sqr ~(gen_power1 (n / 2) xs)>

else <~xs * ~(gen_power1 (n - 1) xs)>

let gen_power n =

<fun x -> ~(gen_power1 n <x>)>

Intuitively: <a b c> is ’(a b c) and <a ~b c> is ’(a ,b c)

Then, we have:

gen_power 3 <x>

-> < ~<x> * ~(gen_power 2 <x>) >

-> < x * ~(<sqr ~(gen_power 1 <x>)>) >

-> < x * ~(<sqr ~(<x>)>)>

-> < x * ~(<sqr x>)>

-> < x * (sqr x)>Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

.

Language support (built-in data types) (3)

But why is it better than Lisp/Scheme ?
Support for types.

Types give a certain reliability of generator.

Types give a certain reliability of generated codes,

AND it ensures “no free variables” in generated codes.

Errors:
x + 1, <x + 1>, <3.0 + 1> <~x + 1>

Ok: <fun x -> x + 1>, fun x -> <~x + 1>,
fun x -> <fun y-> ~x + y + 1>,

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Language support (built-in data types) (4)

Type for codes

if e is type int, then < e > is of type int code.

In general, if e has type T , then < e > is of type T code.

If e has type T code, then ~e is of type T .

Types for gen_power1:

let rec gen_power1 n xs =

if n = 1 then xs

else if (even n) then

.<sqr .~(gen_power1 (n / 2) xs)>.

else .<.~xs * .~(gen_power1 (n - 1) xs)>.

n is of type int, xs is of type int code.
the return type of the generator is int code.
then the generator has type
int -> (int code) -> (int code).

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

Summary

“Codes as strings” are available in most languages, but no
support.

Staged computation: Language support for code generation.

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

Exercises.

Assign types to the following terms (some terms do not have
types.)

<fun x -> x+10> + 20 or
(+ ‘(lambda (x) (+ x 10)) 20)

<fun x -> x+10> 20 or (‘(lambda (x) (+ x 10)) 20)

<(fun x -> x+10) 20> or
‘((lambda (x) (+ x 10)) 20)

<fun x -> ~x + 10> or ‘(lambda (x) (+ ,x 10))

fun y -> <fun x -> ~y +10> or
(lambda (y) ‘(lambda (x) (+ ,y 10)))

fun f -> <fun x -> ~(f <x+10>)> or
(lambda (f) ‘(lambda (x) ,(f ‘(+ x 10))))

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software

.

.

Exercises with Answers.

<fun x -> x+10> + 20 . (Not typable, since we cannot add
20 to a code, since a code itself is not an integer.)

<fun x -> x+10> 20 (Not typable, since we cannot apply a
code to a value, since a code is not itself a function.)

<(fun x -> x+10) 20> (Has a type (int code) under an
empty typing context.)

<fun x -> ~x + 10> (Has a type (int code) under a
typing context x :(int code).)

fun y -> <fun x -> ~y +10> or (Has a type
int -> (int code) under an empty typing context.)

fun f -> <fun x -> ~(f <x+10>)> (Has a type
(int code -> int code) -> (int -> int) code under
an empty typing context.)

Yukiyoshi Kameyama ソフトウェア論理 Logic in Computer Software .

. .

