
.

.

.

.
Logic in Computer Software

Yukiyoshi Kameyama

Dept. of Computer Science, U. of Tsukuba

Yukiyoshi Kameyama Logic in Computer Software .

Summary

“Staging”: code generation by programs (a kind of
meta-programming)

Naive approach: strings as codes

Preproessor approach: quasi-quotation (in Lisp/Scheme),
C++ template

Native support by programming languages: MetaOCaml,
Scala/LMS, (template Haskell)

refers to type-safe meta-programming, implemented in
MetaOCaml (only)

Today:

Safety of codes in staging (in particular, MetaOCaml-style
staging)

Application of staging

Summary

Yukiyoshi Kameyama Logic in Computer Software

.

Example (1)

What is the type of the following program ?

<fun x -> x + 10>

or

‘(lambda (x) (+ x 10))

(int -> int) code

or, (’a, int -> int) code in MetaOcaml

Yukiyoshi Kameyama Logic in Computer Software .

Example (2)

What is the type of the following program ?

<fun x -> ~x + 10>

or

‘(lambda (x) (+ ,x 10))

Error: Wrong level: variable bound at level 1 and used at level 0

Why ?

‘(lambda (x) (+ ,x 10))

is exactly the same as (or rewritten at the input time to):

(list ’lambda ’(x) (list ’+ x ’10))

Namely, x is a free variable.

Yukiyoshi Kameyama Logic in Computer Software



.

.

Example (2)-added

But we sometimes want to define a function now (at the
code-generation time), and to use it later (when the generated
code is used and executed).

let sqr x = x * x;;

let rec s_power = <.... sqr ....>;;

We define the function sqr now, and use it in future .
MetaOCaml allows it: Cross-stage persistence (CSP).

Yukiyoshi Kameyama Logic in Computer Software .

Example (2)-added (cont’d)

# let sqr x = x * x;;

val sqr : int -> int = <fun>

# let rec s_power n x =

if n = 0 then x

else if (n mod 2)=0 then .< sqr .~(s_power (n/2) x)>.

else .< .~x * .~(s_power (n-1) x)>.;;

val s_power : int -> int code -> int code = <fun>

(Ignore periods before/after staging constructs).

sqr has type int -> int, but is used as having the type
(int -> int) code.

Yukiyoshi Kameyama Logic in Computer Software

.

Example (3)

What is the type of the following program ?

fun y -> <fun x -> ~y + 10>

or

(lambda (y) ’(lambda (x) (+ ,y 10)))

int -> ((int -> int) code)

Yukiyoshi Kameyama Logic in Computer Software .

Example (4)

What is the type of the following program ?

fun f -> <fun x -> ~(f <x + 10>)>

or

(lambda (f) ’(lambda (x) ,(f ’(+ x 10))))

(int code -> int code) -> ((int -> int) code)

Yukiyoshi Kameyama Logic in Computer Software



.

.

Example (4)-added

Is there any real application of such a program (having a
complicated type) ?
Yes, we often use such patterns in code generation. (cf. Design
Pattern):

# let eta = fun f -> .<fun x -> .~(f .<x + 0>.) + 0>.;;

eta: (int code -> int code) -> (int -> int) code = <fun>

# let rec s_power n x = ...;;

s_power : int -> int code -> int code = <fun>

(s_power 13 .<x>. would be .<x * ...>.

# let s_power13 = eta (s_power 13);;

val s_power13 : (int -> int) code = <fun>

# let p13 = .! s_power13 in p13 2;; (*compiled*)

_ : int = 8192

Yukiyoshi Kameyama Logic in Computer Software .

Safety of generated codes

Static safety guarantee of no syntax error, no type error and no
scope error (no free variables) in generated codes:

Approach no syntax error no type/scope error

Strings as codes NG NG

Lisp Quasiquotation OK NG

C++ template OK NG

Template Haskell OK NG

Scala LMS OK NG

MetaOCaml OK OK

Note. Safety means “no compile errors for generated codes”, and
it does NOT imply the generated codes are correct.

Yukiyoshi Kameyama Logic in Computer Software

.

Applications of Staging (GE-1)

A generic yet efficient algorithm [Jacques Carette 2005 “Gaussian
Elimination: a case study in efficient genericity with MetaOCaml”,
in SCP].

Maple: a large commercial computer algebra system.
Gaussian Elimination (GE) is an algorithm on square matrices.
Maple contains 35 different implementations of GE with
parameters such as:

Domain of matrix elements: Z, Q, Zi , Z[x], Q(x), Q(α), and
float, · · · (20 different domains).
Fraction-free (or remainder-free) division or not.
Representation of matrices: array of arrays, one-dimensional
array, hash table, and indexing is done in C-style or
FORTRAN-style.
Length measure for pivoting.
Output choices.
Normalization and zero-equivalence.

Parameter choices are not independent and more design
choices: 35 different implementations, still share the same
algorithm. Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (GE-2)

Question: is it OK to maintain all 35 implementations ?

Probably no.

algorithm change may affect all implementations.

some implementation may not utilize optimizations used in
other implementations.

we need abstraction (for reusability, maintainability, and
reliability).

Yukiyoshi Kameyama Logic in Computer Software



.

.

Applications of Staging (GE-3)

Question: is it enough to represent all 35 implementations by one
generic program ?

No, definitely.

Maple is a commercial system, and efficiency is important.

let ge_high findpivot swap zerobelow a m n = ...

if (domain = int) then ...

else if ....

if (fraction_free) then ...

else ...

let new_matrix = add_row (i, j, old_matrix) in ...

Many places to be improved:

Conditionals and Case analysis are bad for efficiency.

Function calls should be eliminated by inlining (if we know
which function is called statically).

Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (GE-4)

Solution: use staging.

We write only one (generic) program in MetaOCaml, and
maintain this code only.

By staging, we generate 35 (and possibly more) different
codes using specific parameters for each choice.

The package (commercial product) contains these codes.

The generic program is easy to read, but bad in efficiency.

The generated codes are hard to read, but good in efficiency.

Moreover, in the MetaOCaml-style staging, the generator
(program) looks like the generated codes.

Yukiyoshi Kameyama Logic in Computer Software

.

Applications of Staging (DSL interpreter-1)

Domain-specific language (DSL) is ubiquitous. (vs.
General-purpose programming languages):

database access

parser generator (e.g., lex/yacc)

wiki

(according to wikipedia) DSL for life insurance policies,
combat simulation, salary calculation, billing, ..

If we have enough resource (time, man-power etc.), we can
develop a compiler for each DSL, but often it’s not possible (and
not necessary).

We usually write an interpreter of DSL.

Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (DSL interpreter-2)

A typical DSL interpreter (written in OCaml):

let rec eval exp env =

match exp with

| Int i -> i

| Add e1 e2 -> (eval e1 env) + (eval e2 env)

| If e1 e2 e3 -> if (eval e1 env) then ...

...

interpretive overhead: if we run the power function (or any
recursive function), we interpret the same function many times.
(power 1000 needs to be interpreted 1000 times, rather than once.)

Yukiyoshi Kameyama Logic in Computer Software



.

.

Applications of Staging (DSL interpreter-3)

Staging will help the situation. We can generate the code (in the
general purpose language) for a program in DSL, then run it.

We only have to interpret each program once.

let rec eval exp env =

match exp with

| Int i -> <i>

| Add e1 e2 -> <~(eval e1 env) + ~(eval e2 env)>

| If e1 e2 e3 -> <if ~(eval e1 env) then ...>

...

Walid Taha 2005, “A Gentle Introduction to Multi-Stage
Programming” reported 5 - 20 times speed up of staged DSL
interpreter.

Yukiyoshi Kameyama Logic in Computer Software .

Applications of Staging (High Performance Code)

Aktemur, Kameyama, Kiselyov,Shan [2013], “Shonan Challenge for
Generative Programming”:

Based on our technique for generating efficient codes using
MetaOCaml-like staging,

we propose a set of challenging programs in
high-performance computing (such as computer algebra, fast
Fourier transform, hidden Markov model etc.),

and ask Staging people to provide good solutions for them.

Yukiyoshi Kameyama Logic in Computer Software

.

Evaluation Criteria of Shonan Challenge

efficiency

reusability/maintainability

safety (and possibly verifiability)

ease of use

and more

Still hot and active research area.

Yukiyoshi Kameyama Logic in Computer Software .

Report

これまでの授業を参考にして、以下の各項目について、自分の考
えを述べよ。

「プログラムによるコード生成」という考え方 (MetaOCaml
風でなくてよい)について，(1) 自分の研究や趣味に関連する
分野で，どのように使われているか，あるいは使われている
と良いか，(2) また，コード生成のためのどのような言語，
ライブラリ，プログラミング環境があれば良いとおもうか，
などを，自由に書きなさい．

「プログラム言語の型システムの役割」について、自分がこ
れまで作成したソフトウェア (あるいは作成中のシステム)に
おいて、どのように使われているか，役に立ったか立たな
かったか，どういう風な型システムであれば嬉しいか，など，
自由に書きなさい．

Yukiyoshi Kameyama Logic in Computer Software


