googn

Oo0ooooog 0oooo
Logic in Computer Software e 000DIDDOONONOOONDOOONDOOODOD
e J00DDDDDDDDNONODONOOOD
0000 e J0DDDDDDODOOOOD
oooo:
goO0 oobooooboogooobodg oDDDDDDDDDStagingD
e 00DOOMO
00000000 Logcin ComputerSofvare | 00000000 Logcin ComputerSofware |
ooooo
1. fact 00000000000 (000 F fact : int — int 00 o 00:TOed 7

0oo)
2.0 M. xx0000000(0O000)

e 00:VYes/No (T'Fe:7000000O0O0O)
e CO OO Fortran, Java

[Fx:o0—=7 TTEx:0 ooooo
MNe=xx:71
e l: e
e J0:00UOOODODO
(x:0—=T1)el e 00 LTOTr(TFe:70000DO)
(x:0)eTl o 00O 2: Failure
Obbb0o —=717=0 e MLOO OO (OCaml, SML, F#)0 Scala, Haskell

0000000 (@OoOOoU000U0sOOOUOOOOOO) 00 0000000000000000000

(Scheme/Lisp,Ruby,Perl,Phython,JavaScript,Scheme/Lisp)

goooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

0000000 (Program Generation) Strings as codes (1)

A standard C-program for the power function (D00 OO OO0
How to represent programs (codes) as data ? 0):
@ Strings
int power (int n, int x) {

o Data types for trees
if (n == 1) {

e Language support for code geneartion (Built-in data types)

return x;
(To dinstinguish two kinds of programs from each other, we write } else if (even(n)) {
“programs” for generating programs, and “codes” for generated return sqr(power(n/2,x));
programs.) } else {
)]] return x*power(n-1,x);
This choice greatly affects the quality of programs and codes. (ease }
of writing/understanding, reusability efficiency, reliability, etc.))

Strings as codes (2)

Suppose n is known now, and x is not known now. A generator for
the power function in C-like notation:

Strings as codes (3)

string gen_powerl (int n, string xs) { Inner product of vectors in C-like notation:
if (n == 1) { return xs;
} else if (even(n)) { float ip (int n, float al[l, float b[]) {
return concat("sqr(", gen_powerl(n/2,xs), ")"); int 1i;
} else { float sum = 0.0;
return concat(xs, "*(", gen_powerl(n-1,xs), ")"); for (i = 0; i < n; i++) {
T sum += al[i] * bl[i];
} }
string gen_power (int n) { return sum;
return }

concat("int power (int x) { return(",
gen_powerl(n, "x"), ");}");

}

assuming that concat does the right job.

goooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

Strings as codes (4) Strings as codes (5)

Suppose n is known, a and b are not known. Generator for inner

Sometimes, we want to generate more specialized code: Suppose n
product:

and a are known, and b is not known.

string gen_ipl (int n, int idx, string as, string bs) {

t (ia) ret "0 o string gen_ipl (int n, int idx, float al[l, string bs) {
if (idx == n) return "0.0";

if (idx == n) return "0.0";
else return
concat(float_to_string(alidx]), " * ",
bs, "[", int_to_string(idx), "] + ",
gen_ipl(n, idx + 1, a, bs));

else return
concat(as, "[", int_to_string(idx), "] * ",
bs, "[", int_to_string(idx), "] + ",
gen_ipl(n, idx + 1, as, bs));

}
string gen_ip (int n, string as, string bs) { ztring gen_ip (int n, float a[l, string bs) {
return])) return concat("float ip (int ", bs, "[1) {"
concat ("float ip (int ", as, "[], int", bs, "[1) {" "return ", gen_ipi(n, O, a, bs), ";", "}");
"return ", gen_ipl(n, 0, as, bs), ";", "}"); }
}

Strings as codes (summary)

Data types for trees as codes (1)

Evaluation:

@ (+) It can be done in almost all programming languages. Lisp/Scheme has trees as primitive data (“Symbolic expression” or

@ (+) So, we don't have to learn more techniques. S-expression for short):

@ (-) It needs a certain (boring) rewriting of the non-generating (+ 1 2) returns 3
version (+ 1 2) returns (+ 1 2)
o (-) It is error prone, especially when we embed codes into (1ist (+ 1 2) (x 2 3)) returns 9
code (“splicing”) (list ’(+ 1 2) ’(x 2 3)) returns ((+ 1 2) (x 2 3))

@ (-) It is not composable; we cannot combine one generator

with internal variables “x" and “y”, and another generator Suitable for symbolic compuation (mathematical formulas, logical

with internal variables “x” and “z". formulas, programs, XML data, sentences in natural languages
etc.)

@ (-) Sometimes (or, often) the generated codes cannot be
compiled due to type errors or unbound variables.

goooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

Data types for trees as codes (2) Data types for trees as codes (3)

Generator for Power function in Scheme:

(define (gen_powerl n xs)
Power function in Scheme: (if (=1 1) xs
(if (even n)
(1ist ’sqr (gen_powerl (/ n 2) xs))
(1ist ’* xs (gen_powerl (- n 1) xs)))))

(define (power n x)
(if (=n 1) x
(if (even n)
(sqr (power (/ n 2) x))

(* x (power (- n 1) x))))) (define (gen_power n)

(1ist ’define ’(power x)
(gen_powerl n ’x)))

Slightly better than the “strings as codes” approach.
Still splicing is problematic.

oooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

Data types for trees as codes (4) Data types for trees as codes (5)

(from the previous slide) Evaluation:

o (+) Better syntax. Ease of writing and understanding. Much

(define (gen_power n)
less error-prone.

(1ist ’define ’(power x)
(gen_powerl n ’x))) @ (+) No overhead; runs in exactly the same speed as the one

without quasi-quotation (it is just an input-macro).
Generator for Power function in Scheme using quasi-quotation: @ (-) Programming language (or its preprocessor) must support
it.
(define (gen_power n)
‘(define (power x)
, (gen_powerl n ‘x)))

@ (-) Still not composable; we cannot combine one generator
with internal variables “x" and “y", and another generator

with internal variables “x" and “z".

Can represent splicing neatly. @ (-) Sometimes (or, often) the generated codes cannot be

Quasi-quotation is like quotation, but allows splicing. compiled due to unbound variables.

goooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

Language support (built-in data types) (1) Language support (built-in data types) (2)

Generator for Power:

Power in OCaml (a dialect of ML): let rec gen_powerl n xs =

let rec power n x = if n=1 then xs

if n=1 then x else if (even n) then

else if (even n) then “(sqr ,(gen_powerl (n / 2) xs))
sqr (power (n / 2) x) else ‘(,xs * ,(gen_powerl (n - 1) xs))

else x * (power (n-1))
let gen_power n =

‘(fun x -> ,(gen_powerl n ‘x))

oooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

Language support (built-in data types) (2) Language support (built-in data types) (3)

Generator for Power:

let rec gen_powerl n xs =
if n = 1 then xs But why is it better than Lisp/Scheme ?
else if (even n) then Support for types.
<sqr “(gen_powerl (n / 2) xs)>) . N
else <"xs * ~(gen_powerl (n - 1) xs)> o Types give a certain reliability of generator.

@ Types give a certain reliability of generated codes,

let gen_power n = @ AND it ensures “no free variables” in generated codes.
<fun x => “(f n <x>)>
Errors:
Intuitively: <a b ¢>is ’(a b c) and <a b c>is ’(a ,b ¢) x + 1,<x + 1> <3.0 + 1> <"x + 1>
Then, we have: Ok: <fun x -> x + 1>, fun x -> <"x + 1>,
gen_power 3 <x> fun x -> <fun y-> “x + y + 1>,

-> < “<x> * “(gen_power 2 <x>) >
-> < x * "(<sqr "(gen_power 1 <x>)>) >
-> < x * “(<sqr “(<x>)>)>

-> < x * “(<sqr x>)>
goooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

Language support (bl data ypes) (4 oo

Type for codes

o if e is type int, then < e > is of type int code. ebDODOUOLDDODOUODDDOOOOULDDD

) . ooooooao
@ In general, if e has type T, then < e > is of type T code.
o If e has t T code. then ~e is of t T e J00OO0OO0OODODODODODODOOOOOUOOOOOOOODODOO
as type T code, then ~e is of type T. 0000000
Types for gen_powerl: o Staging: 100 0IDODOOOODODODOOOOOOODOO
let rec gen_powerl n xs = O0: 000000000000 (@oo0oouooon)

if n = 1 then xs
else if (even n) then

.<sqr ." (gen_powerl (n / 2) xs)>.
else .<."xs * .7 (gen_powerl (n - 1) xs)>.

<fun x -> x+10> or ‘(lambda (x) (+ x 10))
<fun x -> “x +10> or ‘(lambda (x) (+ ,x 10))
fun y -> <fun x -> "y +10> or

(lambda (y) ‘(lambda (x) (+ ,y 10)))

@ fun f -> <fun x -> “(f <x+10>)> or

(lambda (f) ‘(lambda (x) ,(f ‘(+ x 10))))

n is of type int, xs is of type int code.

the return type of the generator is int code.
then the generator has type

int -> (int code) -> (int code).

oooo 00000000 Logic in Computer Software oooo 00000000 Logic in Computer Software

