
Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Continuations for video decoding and scrubbing
Continuation Fest 2008, Tokyo

Conrad Parker

April 13, 2008

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Abstract
About me
Outline

Continuations for video decoding and scrubbing

Playback of encoded video involves scheduling the decoding of
audio and video frames and synchronizing their playback.
”Scrubbing” is the ability to quickly seek to and display an
arbitrary frame, and is a common user interface requirement for a
video editor. The implementation of playback and scrubbing is
complicated by data dependencies in compressed video formats,
which require setup and manipulation of decoder state.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Abstract
About me
Outline

Conrad Parker

kfish on #haskell, and a PhD student at Kyoto University.

I Type-Level Instant Insanity, Monad.Reader #8

I HOgg Haskell Ogg library and tools

I Sweep sound editor (written in C, GTK+)

I Annodex video browsing and search

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Abstract
About me
Outline

Outline of topics

I The goal

I The problems

I How continuations might be used to solve them

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Traditional architecture
Demux+decode
xine architecture
Subproblems

The eventual goal

The basic operations of video playback are demux and
audio+video decode, and the goal is to present these in sync,
despite delays and drift.
Ultimately the available hardware dictates what is possible to
decode. No amount of player re-architecture can reduce the math
workload, but a carefully designed player architecture can ensure
that the CPU use is scheduled among these tasks just-in-time,
avoiding failure and minimizing memory use.

I BOSSA 2008, ”Video player internals”

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Traditional architecture
Demux+decode
xine architecture
Subproblems

Traditional architecture

Most existing video players are built entirely statefully. Compressed
video is data is read in, demuxed to stateful video and audio
decoders, and immediately (via some buffers to absorb latency)
rendered to the screen and speakers.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Traditional architecture
Demux+decode
xine architecture
Subproblems

A simplified architecture diagram

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Traditional architecture
Demux+decode
xine architecture
Subproblems

The actual architecture diagram from xine

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Traditional architecture
Demux+decode
xine architecture
Subproblems

Subproblems

We will concentrate on two subproblems which are difficult to
represent in a conventional player architecture:

I Seeking and scrubbing on compressed video

I Synchronization of audio/video decoders

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

Subproblem: Seek and scrub

Let’s consider problems which are inherent to the video track.

I Seeking and scrubbing on compressed video

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

Video frames

Ignoring audio, consider a sequence of video frames:

We would like some high-level operations on this [Frame]:

I next, prev frame

I seek to frame #

Anything else can be built out of these operations. We assume
that rewind to beginning is just seek to frame 0, and we can
implement seek to chapter if we have a table of contents.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

Complications

I Video files are ”large”.

I Compressed frames are of varying sizes.

I Decoding a frame is CPU-intensive.

I Decoded video frames are very large.

I Due to frame dependencies, the decoder state must be carried
between successive frames.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

Frame dependencies: Predictive frames

I: Intra-frame (Keyframe)
P: Predictive frame: only encode the difference from an earlier
frame

I An Intra-frame and the Predictive frames which depend on it
are collectively called a group of pictures (GOP).

I GOPs are independent of each other.

I This is the scheme used in Theora and MPEG-2 simple profile.
More complex frame dependencies exist in other profiles and
codecs, but they are still limited within a GOP.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

Groups of Pictures (GOPs)

As GOPs are independent of each other, existing C decoder
libraries simply reset the decode state when moving from one GOP
to the next.

I Considering decode states, we can think of the video stream
as a sequence of GOPs:

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

A zipper over GOPs and frames

This leads naturally to a zipper.
But, we want to evaluate the video frames lazily:

I We want to decode frames one at a time; we don’t want to
decode the whole video

I We want to be able to seek to an arbitrary point without
decoding everything in-between, and without losing earlier
decoded frames or earlier decoder states

I After we’ve seeked and started playing, we want to be able to
discard frame data which is no longer needed.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

Binary seeking on varaible bitrate codecs

Most modern codecs are variable bitrate, meaning that compressed
frames are not a constant size; simple pictures can be encoded
using few bits, and and the bits saved there are allocated to the
encoding of more complex pictures. To find a given frame in a
compressed file you either need a seek table, or you do a binary
seek over the file. When doing such a binary seek, we can
dynamically build a seek table for use in future seeks.

I The GOP type in the zipper always records its starting byte
offset, even if it contains no decoded frames

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblem: Seek and scrub
Video frames
Complications
Predictive frames
GOPs
Zipper
Binary seek
Network seek

Seeking over the network

It is also possible to perform the binary seek over the network.
using HTTP/1.1 byte range requests:

I Range: bytes=1000-2000

Or Annodex.net timed URIs, which contain a time offset and
return a new video:

I http://media.example.com/index.axv?t=00:02:30

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblems
Synchronization
Muxing overruns
oggplay-info
Coroutines
Design

Subproblem: Audio/video sync

Now let’s consider complications that arise when we attempt to
simultaneously decode and play audio which is interleaved with the
compressed video data.

I Synchronization of audio/video decoders

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblems
Synchronization
Muxing overruns
oggplay-info
Coroutines
Design

Goal: Synchronize audio and video

The general aim is simply to present audio and video in sync.

I We say that audio and video are in sync when audio is heard
at the same time as the appearance of the visual image
representing it. Think of a clapper board in a film production.

Doing so involves receiving data from the network or disk,
separating it into audio and video frames, interpreting and
adjusting their timestamps, re-ordering and scheduling when to
decode them, and finally rendering these to the respective devices,
allowing for variability in rendering time.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblems
Synchronization
Muxing overruns
oggplay-info
Coroutines
Design

Issue: Muxing can introduce data overruns

Blocks of audio and video have different durations, so they
necessarily run ahead of each other. In a container like Ogg, many
data packets from the same codec can be bundled together into
the same Ogg page. Data overruns become a problem if, for
example, we attempt to decode all available video data even
though this is many frames ahead of the available audio data.
Hence we waste CPU cycles and may not be able to render the
audio in time, losing sync.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblems
Synchronization
Muxing overruns
oggplay-info
Coroutines
Design

Measuring data overruns with oggplay-info

oggplay-info is a tool distributed with the liboggplay source. It
uses oggplay’s playback scheduler to measure data overruns in the
encoded audio and video data.

Theora: Track 0
Worst overrun: 45 frames
Average overrun: 15.811 frames
Histogram bucket size: 2.250
Histogram: 5 10 10 9 12 10 9 5 6 4 4 3 3 2 2 2 3 2 2 2 1
SD of overrun: 11.357817

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblems
Synchronization
Muxing overruns
oggplay-info
Coroutines
Design

Solution: Coroutines for audio/video decode

The decode states of the audio and video tracks are independent.
Ideally, when one is given a block of encoded data (which may
contain a variable number of encoded frames), we would like it to
decode only up to a given duration, and then return. When it is
next called, it should resume from exactly that point in the decode.
This suggests that coroutines might be useful for managing the
decoder states, to allow us to swap efficiently between audio and
video decoding.

I ... rather than leaving it to näıve thread scheduling ...

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Subproblems
Synchronization
Muxing overruns
oggplay-info
Coroutines
Design

Design: Continuations for video decoding and scrubbing

I A cursor into a stream of decoded video frames (a zipper over
GOPs and frames).

I Frames are decoded lazily.

I Decoder states (per GOP) are recreated or restored when
seeking.

I Replace a sequence of decoded frames by the continuation
which created them when no longer required in memory.

I Schedule audio and video by coroutines to avoid problems
caused by muxing overruns.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

C Implementation issues

I’d like to implement this in C for embedded devices ...

I Currently playing with lazy lists, to make a zipper

I Lock-free implementation? (Not dependent on language
runtime)

I Unfortunately, existing C codec libraries are very stateful.

I No setcontext(), getcontext() in uClibc.

Conrad Parker Continuations for video decoding and scrubbing



Introduction
Goal

Seeking and scrubbing on compressed video
Synchronization of audio/video decoders

C Implementation
Conclusion

Conclusion

Conventional architectures for video decoding are very stateful,
which makes operations which affect all parts of a player very
difficult to debug. Such operations include local and network
seeking, and synchronizing the decode of audio and video.
Perhaps continuation-based approaches can be useful to solve
these problems.

I Conrad Parker conrad@metadecks.org

Conrad Parker Continuations for video decoding and scrubbing


	Introduction
	Abstract
	About me
	Outline

	Goal
	Traditional architecture
	Demux+decode
	xine architecture
	Subproblems

	Seeking and scrubbing on compressed video
	Subproblem: Seek and scrub
	Video frames
	Complications
	Predictive frames
	GOPs
	Zipper
	Binary seek
	Network seek

	Synchronization of audio/video decoders
	Subproblems
	Synchronization
	Muxing overruns
	oggplay-info
	Coroutines
	Design

	C Implementation
	Conclusion

