One-shot
Algebraic Effects
adS
Coroutines

@TFP 2020
Satoru Kawahara and Yukiyoshi Kameyama

University of Tsukuba, Japan

Algebraic Effects & Handlers

» Modular way to write computational effects
» Intuition: Resumable exception

1/18

Algebraic Effects & Handlers

Exceptions CANNOT resume the rest of computation.

exception Error : int — exn

let handle_error th =
try th () with

| Error i — 1

handle_error (fun () —
(raise (Error 2)) + 3)

2/18

Algebraic Effects & Handlers

Exceptions CANNOT resume the rest of computation.

exception Error : int — exn
let handle_error th =

try th () with
| Error i — 1

'handle_error (fun () —
(raise (Error 2)) + 3)

2/18

Algebraic Effects & Handlers

Exceptions CANNOT resume the rest of computation.

exception Error : int — exn

let handle_error th =
try th () with

| Error i — 1 :
rest of computation

'handle_error (fun () -~
(raise (Error 2)) + 3)

2/18

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.
Defer : (() — ()) — ()

let handle_defer th =
th ()

| Defer f k — k (); f ()

handle_defer (fun () —

puts "hello")

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.
Defer : (() — () — O
let handle_defer th =

th ()
| Defer f k = k (O); f O

'handle_defer (fun () —
(#Defer (fun () — puts "world"));
puts "hello")

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.
Defer : (() — ()) — ()

let handle_defer th =
th ()

| Defer f K — K (); f ()

rhandle_defer (fun () —
(#Defer (fun () — puts "world"));
puts "hello")

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.
Defer : (() — ()) — ()

let handle_defer thputs "hello"
th ()

| Defer f K — O; £ 0

handle_defer (fun () —
(#Defer (fun () — puts "world"));
puts "hello")

Algebraic Effects & Handlers

» Modular way to define computational effects
» Intuition: Resumable exception

¥ Hot topic for Researchers
e theoretical development
e implementing various control abstractions:
delimited controls, monads, concurrency,
probabilistic/reactive programming, etc.

4/18

Algebraic Effects & Handlers

» Modular way to define computational effects
» Intuition: Resumable exception

¥4 Hot topic for Researchers

e theoretical development

e implementing various control abstractions:
delimited controls, monads, concurrency,
probabilistic/reactive programming, etc.

= Butis it hot topic for Programmers?

4/18

Algebraic Effects for Programmers

Yes!

5/18

Algebraic Effects for Programmers
Yes!

However, we must solve these problems:
» Only research languages have AE as a built-in
» Few languages can implement AE as a library

5/18

Algebraic Effects for Programmers

s there any way to implement AE ?
» available in popular languages

» without siginificant overhead

/

“

6/18

One-shot Algebraic Effects
as Coroutines

One-shot Algebraic Effects
as Coroutines

widely available in those which have coroutines
shallow embedding: withouth large overhead

7/18

One-shot Algebraic Effects
as Coroutines

widely available in those which have coroutines
shallow embedding: withouth large overhead

only with one-shot restriction

7/18

Technically

To implement AE by coroutines:----

8/18

Technically

To implement AE by coroutines:----

1. define two languages
o Neff oo A with One-shot Algebraic Effects

® Ay e A with Asymmetric Coroutines

8/18

Technically

To implement AE by coroutines:----

1. define two languages
o Neff oo A with One-shot Algebraic Effects
e Aye - A with Asymmetric Coroutines

2. define a translation from A4 to A,

8/18

Technically

To implement AE by coroutines:----

1. define two languages
°)\eff ------ A with One-shot Algebraic Effects
e Aye - A with Asymmetric Coroutines

2. define a translation from A4 to A,

AN

based on macro expressibility [Felleisen 1991]
local and compositional

8/18

Technically

To implement AE by coroutines:----

2. definea tra nsla\tion from Az O Ay

based on macro expressibility [Felleisen 1991]
local and compositional

8/18

Connection between two controls

Algebraic Effects Coroutines
...... resume co; resume co
handle co
‘ o (#0Op X)) ceeee o (yield x) ==

9/18

Connection between two controls

Algebraic Effects Coroutines
...... resume co; resume co
handle co
‘ cee (#op X) cee (yj’e-l_d X)

9/18

Connection between two controls

Algebraic Effects Coroutines
...... k o; k u resume co; resume co

Cco

9/18

Connection between two controls

Algebraic Effects Coroutines
...... k o; k u resume co; resume co

ha co

9/18

Connection between two controls

Algebraic Effects Coroutines
...... k o; k u resume co; resume co

/

ha Co

.“(yield X)

9/18

Connection between two controls

Algebraic Effects Coroutines
...... k o; k u resume co; resume, co

hamdle CO,(/ o
‘ . -(yield x).

9/18

Connection between two controls

___One-Shot
Algebraic Effects Coroutines
...... k o; resume co; resume co
/ A
ha e co

{(y1 eld x) .

9/18

One-shot . Asymmetric
Algebraic Effects Coroutines

10/18

One-shot . Asymmetric
Algebraic Effects Coroutines

A s A

TN Ay —

L eff ac

e Simple - easy to implement

e local - as library

10/18

Going to real world

Our translation as libraries

® Lua : :
4 Ruby %pubhshed on €) GitHub

11/18

Going to real world

Our translation as libraries

® Lua : :
4 Ruby %pubhshed on €) GitHub

ss JavaScript __limplemented by other users
® Rust based on ours

11/18

Going to real world

Our translation as libraries

® Lua
. -
4 Ruby %pubhshed on €) GitHub

ss JavaScript __limplemented by other users
® Rust based on ours

O the fruits of versatility and simplicity

11/18

Going to real world

® Lua: 200 lines &l Ruby: 340 lines

local Choice = Choice =
local always_right = { always_right =
[Choice] = function(k, 1, r) .on(Choice){|k, 1, r| k[r] }
return k(r)
end always_right.run {

}

always_right(function()
+ 3

}

end)

12/18

https://github.com/Nymphium/eff.lua
https://github.com/Nymphium/ruff

We compare the performance in Lua:
A our library based on the translation
B implementation based on Free Monad

13/18

We compare the performance in Lua:

A our library based on the translation
B implementation based on Free Monad

Free

Monad | Ours
onestate 1 0.10
multistate |1 3.16
looper 1 0.11
same-fringe | 1 0.04

smaller is faster

13/18

onestate

e invoking effect inside a rec fun
® catching by handler outside the fun

Single effect

time(seo) O 10x faster
15 » Ours:
' continuations as coroutines
05 » Free Monad:
Tt continuations as function
e closures

A Ours
B Free Monad

14/18

multistate

Nested handler %0 onestate with fixed parameter

e catching the outermost handler

time(sec) X O.3X but
04 | » Free Monad also slows
down

0.2 +

././/-/' 0.6~0.07x of onestate

o w w o P Nesting 50 is extreme
param

s ours and will not be a real
B FreeMonad problem

15/18

terati e invoking effect inside of loop
eration e catching them outside of loop
time(sec) O 9X faster

» Ours: built-in for loop

» Free Monad:
forM with function closures

A Ours
B Free Monad

16/18

same fringe

Re-implementing e re-implementing coroutine
native effects e solving same-fringe problem

time(sce) O 18x than Free Monad
015 O 0.65x than Native
0.1 Coroutines
5-10-2 It can be run without large
overhead

param .104

* Lua native coroutine
A Ours

B Free Monad
17/18

A new Algebraic Effects implementation
using Coroutines:

» relate one-shot AE with Coroutines

define macro-expressible translation
implement the translation as a library
resolve existing problems

widely available in those which have coroutines
shallow embedding: withouth large overhead
direct-style without special syntax or transpilation

vyy

18/18

continuation/AE

| expressive power copying stack

conr?%ilﬁhsggton strong necessary
one-shot
continuation weak THIEE 25
coroutines weak unnecessary

» No copying makes it run efficiently
O Exception, State, Concurrent, DI
x Nondet, Backtracking

2
expressible _
m

>\6ff ¢ W/in;E;te)\CLC

non-standard
M M| len

)\effvvith (oonnnnnnns y)\ac with

multi-shot snapshot

A Conflics with existing effects

Our translation [[—T] is defined
disregard for the effects of host language

coroutines, exceptions, etc.

re-implement them with AE
to resolve the conflict

enables to mix in their effects

