
One-shot
Algebraic Effects

as
Coroutines

@TFP 2020

Satoru Kawahara and Yukiyoshi Kameyama

University of Tsukuba, Japan

Algebraic Effects & Handlers

I Modular way to write computational effects

I Intuition: Resumable exception

1/18

Algebraic Effects & Handlers

Exceptions CANNOT resume the rest of computation.

exception Error : int → exn

let handle_error th =
try th () with
| Error i → i

handle_error (fun () →
(raise (Error 2)) + 3)

(raise (Error 2)) + 3

rest of computation

2/18

Algebraic Effects & Handlers

Exceptions CANNOT resume the rest of computation.

exception Error : int → exn

let handle_error th =
try th () with
| Error i → i

handle_error (fun () →
(raise (Error 2)) + 3)(raise (Error 2))

+ 3

rest of computation

2/18

Algebraic Effects & Handlers

Exceptions CANNOT resume the rest of computation.

exception Error : int → exn

let handle_error th =
try th () with
| Error i → i

handle_error (fun () →
(raise (Error 2)) + 3)(raise (Error 2)) + 3

rest of computation

2/18

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.

effect Defer : (() → ()) → ()

let handle_defer th =
handle th () with
| Defer f k → k (); f ()

handle_defer (fun () →
(#Defer (fun () → puts "world"));
puts "hello")

3/18

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.

effect Defer : (() → ()) → ()

let handle_defer th =
handle th () with
| Defer f k → k (); f ()

handle_defer (fun () →
(#Defer (fun () → puts "world"));
puts "hello")
(#Defer (fun () → puts "world"))

f

3/18

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.

effect Defer : (() → ()) → ()

let handle_defer th =
handle th () with
| Defer f k → k (); f ()

handle_defer (fun () →
(#Defer (fun () → puts "world"));
puts "hello")
(#Defer (fun () → puts "world"))

f

;
puts "hello"

3/18

Algebraic Effects & Handlers

Algebraic Effect CAN resume the rest of computation.

effect Defer : (() → ()) → ()

let handle_defer th =
handle th () with
| Defer f k → k (); f ()

handle_defer (fun () →
(#Defer (fun () → puts "world"));
puts "hello")
(#Defer (fun () → puts "world"))

f

;
puts "hello"

puts "hello"

f ()

3/18

Algebraic Effects & Handlers

I Modular way to define computational effects
I Intuition: Resumable exception

　　 Hot topic for Researchers
• theoretical development
• implementing various control abstractions:

delimited controls, monads, concurrency,
probabilistic/reactive programming, etc.

　　 But is it hot topic for Programmers?

4/18

Algebraic Effects & Handlers

I Modular way to define computational effects
I Intuition: Resumable exception

　　 Hot topic for Researchers
• theoretical development
• implementing various control abstractions:

delimited controls, monads, concurrency,
probabilistic/reactive programming, etc.

　　 But is it hot topic for Programmers?

4/18

Algebraic Effects for Programmers

Yes!

However, we must solve these problems:
I Only research languages have AE as a built-in

I Few languages can implement AE as a library

5/18

Algebraic Effects for Programmers

Yes!
However, we must solve these problems:
I Only research languages have AE as a built-in

I Few languages can implement AE as a library

5/18

Algebraic Effects for Programmers

　　

Is there any way to implement AE ?
I available in popular languages
I without siginificant overhead

6/18

Our solution

One-shot Algebraic Effects
as Coroutines

　　 widely available in those which have coroutines

　　 shallow embedding:withouth large overhead

　　 only with one-shot restriction

7/18

Our solution

One-shot Algebraic Effects
as Coroutines

　　 widely available in those which have coroutines

　　 shallow embedding:withouth large overhead

　　 only with one-shot restriction

7/18

Our solution

One-shot Algebraic Effects
as Coroutines

　　 widely available in those which have coroutines

　　 shallow embedding:withouth large overhead

　　 only with one-shot restriction

7/18

Technically

To implement AE by coroutines……

1. define two languages
• λeff · · · · · · λwith One-shot Algebraic Effects

• λac · · · · · · λwith Asymmetric Coroutines

2. define a translation from λeff to λac

8/18

Technically

To implement AE by coroutines……
1. define two languages

• λeff · · · · · · λwith One-shot Algebraic Effects

• λac · · · · · · λwith Asymmetric Coroutines

2. define a translation from λeff to λac

8/18

Technically

To implement AE by coroutines……
1. define two languages

• λeff · · · · · · λwith One-shot Algebraic Effects

• λac · · · · · · λwith Asymmetric Coroutines

2. define a translation from λeff to λac

8/18

Technically

To implement AE by coroutines……
1. define two languages

• λeff · · · · · · λwith One-shot Algebraic Effects

• λac · · · · · · λwith Asymmetric Coroutines

2. define a translation from λeff to λac

based onmacro expressibility [Felleisen 1991]
local and compositional

8/18

Technically

To implement AE by coroutines……
1. define two languages

• λeff · · · · · · λwith One-shot Algebraic Effects

• λac · · · · · · λwith Asymmetric Coroutines

2. define a translation from λeff to λac

based onmacro expressibility [Felleisen 1991]
local and compositional

8/18

Connection between two controls

Algebraic Effects

……

handle

k o; k u

…(#Op x)……

(#Op x)……

………………………

……

Coroutines

resume co;resume co
co
…(yield x)……

(yield x)……

…………………………

……

9/18

Connection between two controls

Algebraic Effects

……

handle

k o; k u

…(#Op x)……
………………………

……

Coroutines

resume co;resume co
co
…(yield x)……

(yield x)……

…………………………

……

9/18

Connection between two controls

Algebraic Effects

……

handle
k o; k u

…(#Op x)……
………………………

……

………………………

……

Coroutines

resume co;resume co
co
…(yield x)……

(yield x)……

…………………………

……

9/18

Connection between two controls

Algebraic Effects

……

handle
k o; k u

…(#Op x)……
………………………

……

………………………

……

Coroutines

resume co;resume co
co
…(yield x)……

(yield x)……

…………………………

……

9/18

Connection between two controls

Algebraic Effects

……

handle
k o; k u

…(#Op x)……
………………………

……

………………………

……

Coroutines

resume co;resume co
co
…(yield x)……
…………………………

……

9/18

Connection between two controls

Algebraic Effects

……

handle
k o; k u

…(#Op x)……
………………………

……

………………………

……

Coroutines

resume co;resume co
co
…(yield x)……
…………………………

……

…………………………

……

9/18

Connection between two controls

Algebraic Effects

……

handle
k o; k u

…(#Op x)……
………………………

……

………………………

……

　　

One-Shot
Coroutines

resume co;resume co
co
…(yield x)……
…………………………

……

…………………………

……

9/18

Translation

One-shot
Algebraic Effects

→ Asymmetric
Coroutines

⇓
V−W :λeff → λac

• simple …… easy to implement

• local …… as library

10/18

Translation

One-shot
Algebraic Effects

→ Asymmetric
Coroutines

⇓
V−W :λeff → λac

• simple …… easy to implement

• local …… as library

10/18

Going to real world

Our translation as libraries

Lua

Ruby
published on� GitHub

JavaScript

Rust

implemented by other users

based on ours

◦the fruits of versatility and simplicity

11/18

Going to real world

Our translation as libraries

Lua

Ruby
published on� GitHub

JavaScript

Rust

implemented by other users

based on ours

◦the fruits of versatility and simplicity

11/18

Going to real world

Our translation as libraries

Lua

Ruby
published on� GitHub

JavaScript

Rust

implemented by other users

based on ours

◦the fruits of versatility and simplicity

11/18

Going to real world

Lua: 200 lines
local Choice = inst()
local always_right = handler {

[Choice] = function(k, l, r)
return k(r)

end
}

always_right(function()
perform(Choice(1, 2)) + 3

end)

Ruby: 340 lines
Choice = Effect.new
always_right = Handler.new

.on(Choice){|k, l, r| k[r] }

always_right.run {
Choice.perform(1, 2) + 3

}

12/18

https://github.com/Nymphium/eff.lua
https://github.com/Nymphium/ruff

Evaluation

We compare the performance in Lua:

N our library based on the translation
� implementation based on Free Monad

Free
Monad Ours

onestate 1 0.10
multistate 1 3.16
looper 1 0.11
same-fringe 1 0.04

smaller is faster

13/18

Evaluation

We compare the performance in Lua:

N our library based on the translation
� implementation based on Free Monad

Free
Monad Ours

onestate 1 0.10
multistate 1 3.16
looper 1 0.11
same-fringe 1 0.04

smaller is faster

13/18

onestate

Single effect
• invoking effect inside a rec fun

• catching by handler outside the fun

2 3 4 5
·105

0.5

1

1.5

2

param

time(sec)

N Ours

� Free Monad

◦10x faster

I Ours:
continuations as coroutines

I Free Monad:
continuations as function
closures

14/18

multistate

Nested handler
• onestate with fixed parameter
• catching the outermost handler

20 30 40 50

0.2

0.4

param

time(sec)

N Ours

� Free Monad

× 0.3x but……

I Free Monad also slows
down
0.6〜0.07x of onestate

I Nesting 50 is extreme
and will not be a real
problem

15/18

looper

Iteration
• invoking effect inside of loop
• catching them outside of loop

2 3 4 5
·105

0.2

0.4

0.6

0.8

param

time(sec)

N Ours

� Free Monad

◦9x faster

I Ours: built-in for loop
I Free Monad:

forMwith function closures

16/18

same fringe

Re-implementing
native effects

• re-implementing coroutine
• solving same-fringe problem

2 3 4 5
·104

5 · 10−2

0.1

0.15

param

time(sec)

? Lua native coroutine

N Ours

� Free Monad

◦18x than Free Monad

◦0.65x than Native
Coroutines
It can be run without large
overhead

17/18

Summary

A new Algebraic Effects implementation
using Coroutines:
I relate one-shot AE with Coroutines
I definemacro-expressible translation
I implement the translation as a library
I resolve existing problems
　　 widely available in those which have coroutines

　　 shallow embedding: withouth large overhead

　　 direct-style without special syntax or transpilation

18/18

One-shot continuation/AE

expressive power copying stack

multi-shot
continuation

strong necessary

one-shot
continuation

weak unnecessary

coroutines weak unnecessary

unnecessary

unnecessary

I No copying makes it run efficiently

◦Exception, State, Concurrent, DI

× Nondet, Backtracking

Translation

λ

λeff λac

V−W
w/o state

macro
expressible

λeffwith
multi-shot

λac with
snapshot

non-standard

impl

⊇ ⊇

impl

w/ state
⊇ ⊇

　　 Conflics with existing effects

Our translation V−W is defined
disregard for the effects of host language

coroutines, exceptions, etc.

　　
re-implement them with AE
to resolve the conflict
enables to mix in their effects

