
One-shot Algebraic Effects as Coroutines

Satoru Kawahara1,2 and Yukiyoshi Kameyama1,3

1 Department of Computer Science, University of Tsukuba, Japan
2 sat@logic.cs.tsukuba.ac.jp

3 kameyama@acm.org

Abstract. This paper presents a translation from algebraic effects and
handlers to asymmetric coroutines, which provides simple, portable and
widely applicable implementation of algebraic effects. Algebraic effects
and handlers are an emerging new feature to model effectful computa-
tions and attract attention not only from researchers but also from pro-
grammers. They are implemented in various ways as part of compilers,
interpreters, or as libraries. We present a direct embedding of one-shot
algebraic effects and handlers in a language which has asymmetric corou-
tines. The key observation is that, by restricting the use of continuations
to be one-shot, we obtain a simple and sufficiently general implementa-
tion via coroutines, which are available in many modern programming
languages. Our translation is a macro-expressible translation, and we
have implemented it embedding as a library in Lua and Ruby, which
allows one to write effectful programs in a modular way using algebraic
effects and handlers.

Keywords: Algebraic Effects and Handlers · Coroutines · Continuations
· Control Operators · Macro Expressibility

1 Introduction

Algebraic effects [21] and handlers [22] (AEH for short) are an emerging new
feature to model effectful computations in a modular way. They are gaining more
and more attention not only from researchers but also from practitioners. There
are a few dedicated programming languages such as Eff [1], Multicore OCaml [7]
and Koka [17] which have AEH as language primitives, and several main-stream
programming languages such as Haskell, OCaml, Scala, JVM bytecode and C
have library implementations for AEH. However, AEH is not yet available in
many other main-stream programming languages, which is a big obstacle to
utilize theoretical results on AEH in real-world software. We, therefore, think
that it is an important and timely issue to develop a systematic implementation
method for AEH which is available in many existing programming languages.

AEH have been so far implemented in several ways such as the one based
on stack manipulation, delimited-control operators [6], or free monad. Unfortu-
nately, none of them are fully satisfactory; The implementation method based
on stack manipulation is used for JVM bytecode and C [4,18], however, an
implementer needs deep insight on its internal structure. It then follows that

mailto:sat@logic.cs.tsukuba.ac.jp
mailto:kameyama@acm.org

2 Satoru Kawahara and Yukiyoshi Kameyama

the implementation cost is rather high, which prevents the feature from be-
ing implemented in various language systems. The implementation method via
delimited-control operators is used for OCaml and Scala [3,16]. It is a systematic
way to implement AEH, since it needs no knowledge on low-level features, how-
ever, only few languages have delimited-control operators as built-in primitives.
The implementation method based on free monads is yet another systematic way,
and used in Haskell and Scala [14,15]. While elegant, its major demerits are that
it enforces a programmer to use monadic-style, and that it is often inefficient.

This paper presents a new systematic method of implementing algebraic ef-
fects and handlers which is general, available in many languages, and simple
and portable, compared to the existing implementations. The key of our method
is to use coroutines to embed them in programming languages. Today we see
a number of programming languages which have coroutines as a built-in fea-
ture, which makes it possible to apply our implementation method in various
languages with no or little cost. While coroutines are less expressive than gen-
eral delimited-control operators, they are as expressive as one-shot delimited
control-operators, a restricted control operator that is allowed to invoke a de-
limited continuation at most once [20]. One-shot delimited-control operators are
known to be implemented more efficiently than general, multi-shot ones, thanks
to the fact that no copying of continuations is necessary [5]. Hence, we face the
trade-off between expressiveness and efficiency. This paper studies the one-shot
variant which gives less expressive, but more performant primitives for AEH. In
fact, various control effects are expressible with the one-shot variant.

We translate one-shot AEH to asymmetric coroutines. The salient feature
of our translation is that it is a macro-expressible translation in the sense of
Felleisen. Thanks to this property, we can implement AEH as a simple library,
and we have created AEH libraries for Lua 4 and Ruby5, which have been pub-
lished via github. Our libraries have been used by several users, and interested
users have ported our libraries to other languages67.

Our main contributions in this paper are the following.

– We show an embedding of one-shot algebraic effects and handlers. We use
standard asymmetric coroutines only, and no special control features are
needed. Hence our embedding is applicable to various languages as long as
they have asymmetric coroutines.

– Comparing to the embedding based on free monads, our method does not
force programmers to use monadic style, and our embedding is more perfor-
mant in many cases than the one based on free monads.

– Our embedding is defined as local and compositional translation from alge-
braic effects and handlers. Thanks to this property, we can implement the
embedding as a library, and in fact we have done it for Lua and Ruby, which

4 https://github.com/nymphium/eff.lua
5 https://github.com/nymphium/ruff
6 https://github.com/MakeNowJust/eff.js
7 https://github.com/pandaman64/effective-rust Since Rust does not have coroutines,
Future is used instead.

https://github.com/nymphium/eff.lua
https://github.com/nymphium/ruff
https://github.com/MakeNowJust/eff.js
https://github.com/pandaman64/effective-rust

One-shot Algebraic Effects as Coroutines 3

is available on GitHub. Algebraic effects and handlers is a complex system,
and the implementation can be therefore error-prone. So our formalized im-
plementation is desirable.

This paper is organized as follows. Section 2 shows typical examples using
AEH and demonstrates our algebraic-effect library for Lua. Section 3 describes
the embedding method by defining the translation from λeff , a language with
algebraic effect handlers, to λac , a language with asymmetric coroutines. We also
show that our translation is macro expressible in the sense of Felleisen. Section 4
discusses the extension of our model definitions for implementing our libraries
in Lua and Ruby, and problems in actual use. Section 5 shows the performance
evaluation of our embedding by comparing ours with the embedding based on
free monads. Section 6 describes related work, and Section 7 concludes.

2 Examples of one-shot algebraic effects

This section illustrates programming with AEH by examples. To express them,
we use the programming language Lua extended with our library, which is im-
plemented using our embedding explained in the subsequent sections.

2.1 Exception

In our view, AEH is a generalization of exceptions, which is justified by the
following examples.

The function inst provided by our library creates, when called with zero
argument, a new label for an algebraic effect, and returns it.

1 local DivideByZero = inst()

We can invoke the labeled effect by calling the function perform in our library.

1 local div = function(x, y)

2 if y == 0 then

3 return perform(DivideByZero, nil)

4 else

5 return x / y

6 end

7 end

This code snippet is Lua’s definition for the function div, which takes two ar-
gument x and y. It returns the result of dividing x by y unless y is 0. If y is 0,
it performs the effect labeled by DivideByZero, which means that an effect is
raised and the control of the program is brought to the nearest effect handler
(which is not shown in the above code) similarly to exception handling.

Our library provides the function handler to create a new effect handler.

4 Satoru Kawahara and Yukiyoshi Kameyama

1 local with_nil = handler {

2 val = function(_) return nil end,

3 [DivideByZero] = function(_, _)

4 return nil

5 end

6 }

The function handler receives a table, Lua’s data structure for an associative
array8, as its sole argument in which e1 = e2 represents the key-value pair [

"e1"] = e2. The first key-value pair (Line 2) has the key val, and defines a
value handler which is used when no effect happens, and the second key-value
pair (Lines 3 and 4) defines how the effect DivideByZero is processed. The
value part of the key-value pair is a function in both cases. While the value
handler receives one argument (which corresponds to the result of the handled
expression), the effect handler receives two arguments, the first of which is the
argument of the effect invocation and the second is a delimited continuation
when the effect has been invoked (up to the handler invocation).

In the above snippet, the arguments are ignored, and the whole computation
returns nil in both cases, representing simple exception capturing. By evaluating
with_nil(function() return div(3, 0) end), we get nil as the result.

We can turn the above simple exception to a resumable exception by changing
the effect handler as follows.

1 local with_default_zero = handler {

2 val = function(v) return v end,

3 [DivideByZero] = function(_, k)

4 return k(0)

5 end

6 }

Here we changed the second case of the handler (Lines 3 and 4) so that a pa-
rameter k is bound to the second argument (delimited continuation), which is
invoked with the argument 0, and its value becomes the final result.

We can test the handler with_default_zero as follows.

1 with_default_zero(function()

2 local v = div(3, 0)

3 return v + 20

4 end)

When we execute Line 2 of this code, the effect DivideByZero is performed
(raised) as before. Then the handler with_default_zero catches it, and captures
the delimited continuation local v = �; return v + 20, which is bound to
the variable k. (Strictly speaking, the delimited continuation should be sur-
rounded by the handler with_default_zero, but we omit it here since there

8 https://www.lua.org/manual/5.3/manual.html#3.4.9

https://www.lua.org/manual/5.3/manual.html#3.4.9

One-shot Algebraic Effects as Coroutines 5

is no effect in the continuation and its value handler is the identity function.)
Then we execute k(0), which is equivalent to local v = 0; return v + 20.
The net effect is the same as the case when div(3,0) returns 0, and the entire
computation results in 0 + 20 = 20.

2.2 State

AEH can express not only exceptions, but also many other effects. Here, we show
how state can be expressed in terms of these operations using the state-passing
technique.

We first create two effect labels.

1 local Get = inst()

2 local Put = inst()

We then define the function run to execute stateful computations.

1 local run = function(init, task)

2 local step = handler {

3 val = function(_) return function() end end,

4 [Get] = function(_, k)

5 return function(s)

6 return k(s)(s)

7 end

8 end,

9 [Put] = function(s, k)

10 return function(_)

11 return k()(s)

12 end

13 end

14 }

15

16 return step(task)(init)

17 end

The function takes two arguments init for the initial state (such as a single value
or a tuple of several values) and a thunk task for the stateful computation. It
first defines the handler step, which manipulates the normal-return case and
the two effects labeled by Get and Put. Following the state-passing scheme, the
value handler returns a function which ignores its argument (for state). In the
stateful computation, when the effect Get is invoked, then the handler returns
the function that retrieves the current state s. and supplies it to the current
continuation (k(s) in line 6) with the same state s. When the effect Put with
an parameter s is invoked, the handler returns a thunk in which a meaningless
value () is passed to the continuation, but a new state s is installed (line 11).
After defining the handler, the function run executes the computation task with
the initial state init (line 16).

6 Satoru Kawahara and Yukiyoshi Kameyama

Note that it is important that the captured continuation is surrounded by
the same handler step. In fact, the algebraic effects and handler are similar to
the control operators shift0 and reset0 [19]; when an effect is invoked by shift0
and captured by reset0, the captured delimited continuation is surrounded by
the delimiter reset0.

2.3 Expressing other Computational Effects

We can express other advanced control effects using one-shot algebraic effects
and handlers. Examples include generators and iterators, let-insertion in partial
evaluation, and Go language’s defer9, Due to lack of space, we cannot show
these examples in this paper. See the github repository of our library. We have
already implemented async/await, shift/reset, fetching current time (a sort of
dependency injection) and measuring execution time, by our library.

3 Embedding Algebraic Effects with Coroutines

This section explains our translation from one-shot algebraic effects and handlers
to asymmetric coroutines. For this purpose, we define λeff , a language which has
one-shot AEH, and λac , a language which has asymmetric coroutines. We then
translate λeff to λac , and show that it is a macro-expressible translation.

3.1 λeff

λeff is an untyped language with one-shot AEH based on Effy [23]. For simplicity,
we omit dynamic creation of effect lablels.

Figure 1 defines the syntax of λeff . The set Effects is a finite set of ef-
fect lables, and we use eff as meta variables for it. The syntactic categories
v, e, and h, resp. represent values, expressions and handler expressions, resp.
The expression perform eff v invokes the effect eff with the argument v, and
with v handle e evaluates e under the handler specified by the value v. A usual
let binding is written as let x = c1 in c2.

The handler expression handler eff (val x→ e1) ((y, k)→ e2) creates a han-
dler which catches the effect eff and returns the value of e2 where y is bound to
the argument of the effect-performing operation, and k is bound to the delimited
continuation when the effect is invoked. The expression val x→ e1 gives a value
handler, namely, a handler which is used when the body of a handler returns
normally (does not invoke an effect). For simplicity, λeff can handle only one
effect per handler, whereas handlers in Effy can cope with multiple effects. But
the latter can be simulated by our single-effect handlers, and our library actually
provides the multi-effect variant; see Section 4.

The syntactic category w and the subsequent lines are used to define the
semantics of λeff . The class w represents runtime values for function closures

9 https://golang.org/ref/spec#Defer statements

https://golang.org/ref/spec#Defer_statements

One-shot Algebraic Effects as Coroutines 7

x ∈ Variables
eff ∈ Effects
v ::= x | h | λx. e
e ::= v | v v | let x = e in e
| perform eff v | with v handle e

h ::= handler eff (val x→ e) ((x, x)→ e)

w ::= clos (λx.e, E) | closh (h,E)
F ::= (� e, E) | w �

| (let x = � in e, E)

| (with w handle �)eff

| (with � handle e, E)
C ::= e | w
E ::= [] | (x = w) :: E
K ::= [] | F :: K

Fig. 1: Syntax and runtime representation of λeff

(clos (λx.e, E)) and handlers (closh (h,E)) where E is a runtime enviroment,
and F represents a frame, or a singular context, which means a ’one-step’ frag-
ment of a continuation. A (delimited) continuation K is a list of frames.

The call-by-value operational semantics of λeff is defined in the CEK-machine
style [9]. We give it in Section A of the appendix of this paper, and here we infor-
mally explain the effect primitives only. The handler expression handler eff (val x→ ev) ((x, k)→ eef)
creates a handler which consists of a value handler and an effect handler, and
associates the effect label eff to it. The expression with h handle e (which is
called a handling expression) evaluates the expression e under the handler h. The
expression perform eff v invokes the effect eff with an argument v. Note that
handling expressions may be nested, and an effect invocation is caught (han-
dled) by the nearest (innermost) handler which can handle the effect. When the
handled expression is evaluated to a value, the value handler is used.

3.2 λac

De Moura and Ierusalimschy’s seminal work [20] classified various forms of corou-
tines found in programming languages, and formalized calculi for symmetric
coroutines and asymmetric coroutines. The former represents classic coroutines
which can call (resume) other coroutines, but coroutines cannot return to their
callers. The latter represents modern coroutines where the caller-caller relation
exists, hence, coroutines may return to their callers.

8 Satoru Kawahara and Yukiyoshi Kameyama

The language λac is based on asymmetric coroutines10. For the purpose of
translation and practical programming, we have added to this language several
constructs such as data constructors, let with recursion, pattern matching, and
comparison operators.

Figure 2 defines the syntax of λac . The syntactic categories K and l, resp.,
represent data constructors and labels for coroutines, resp. The set eff corre-
sponds to the set of effect labels in λeff , and we assume that its elements are
constants in λac Values v are either constants, an expression formed by applying
a data constructor to values K −→v ?, labels, variables, or lambda expressions. Ex-
pressions e are those in lambda calculus extended with conditional expressions,
pattern matching and mutual recursion, plus those for asymmetric coroutines:
l : e for a labeled expression which represents the “return point” of resuming a
coroutine, create e for creating a coroutine and returning its label, resume e1 e2

for resuming (calling) a coroutine, and yield e for yielding a value and returning
to the caller of the current coroutine.

f −→x is an abbreviation of f x0 x1 · · · · · · xn and
−−−−−−−−−→
and g −→y = e is of and g0

−→y =
e0 and g1

−→y = e1 and · · · · · · and gm −→y = em. A similar abbreviation is applied
to constructors and pattern matching.

The expression match e with cases is for pattern matching. We add restricted
guards to pattern matching so that cases may contain a form K −→x when x =
x→ e. This restricted form is sufficient for our purpose.

The call-by-value operational semantics of λac is defined in the same way
as de Moura and Ierusalimschy and given in Section B of Appendix. Here we
briefly explain the semantics of the primitives for coroutine; create e creates a
unique label and a coroutine with its body being the value of e, and returns the
label. The expression resume l v resumes the coroutine labeled with l against
the argument v. It is an error if a coroutine whose label is l does not exist, or
has already been called. A resumed coroutine must return to the caller, so we
create an expression l : e3 where ee is the body of the resumed coroutine. When
an expression yield v is called in the evaluation of a coroutine, the coroutine is
suspended and stored for future use, and v is returned to the caller of the current
coroutine. It is an error if there is no caller of the current coroutine when yield

is invoked.

3.3 Translation from λeff to λac

We present a program translation from λeff to λac , which is syntax-directed and
compositional. The whole translation is defined in Figure 3 where a λeff -term e
is translated to a λac-term VeW.

The translation is homomorphic for a variable, a λ-abstraction, an applica-
tion, and the let expression. An effect label eff is translated to a constant with
the same name.

10 More strictly speaking, our calculus is the one for stackful asymmetric coroutines
according to de Moura and Ierusalimschy’s classification.

One-shot Algebraic Effects as Coroutines 9

x ∈ Variables
K ∈ {Eff ,Resend ,True,False}
l ∈ Labels

eff ∈ Effects
v ::= nil | eff | K −→v ? | l | x | λx.e
e ::= v | K −→e ? | l : e | e e | let x = e in e
| match e with cases
| create e | resume e e | yield e

letrec ::= let rec x −→x = e
[−−−−−−−−−→
and x −→x = e?

]
in e

cases ::=
−−−−−−−−−−→
pat [cond]→ e;

cond ::= when x = x

pat ::= K
−→
pat? | x

C ::= � | C e | v C | let x = C in e | let x = v in C
| match C with cases | let rec f −→x = e in C
| C = e | eff = C

| let rec f −→x = e
−−−−−−−−−→
and f −→x = e? in C

| create C | resume C e | resume l C | yield C | l : C

Fig. 2: the syntax of λac

We translate perform to yield based on the following observation. In the
calculus for AEH, when an effect is invoked, the control is transferred to a
handler corresponding to the effect, while in the calculus for coroutines, when
a yield is called, the control is transferred to its parent coroutine. Hence we
can emulate the behaviour of perform by yield. The translation wraps the
arguments of perform with the tag Eff and translates them. This tag is used
to determine whether the effect has been yielded from the handled expression
itself, or the effect has been resent (forwarded) by the handler. The handling
expression with h handle e is translated to a simple application as the handler
is mapped to a function.

The translation for a handler (the last case in Figure 3) is highly non trivial,
and we shall explain it using an example.

Consider the program M in λeff with the effects C1, C2, and C3 (Figure 4).
Here we assume that our calculus is extended to have natural numbers arith-
metic operations. Then M is translated to the program in Figure 5 where some
variables and let-bindings are renamed or inlined for readability.

10 Satoru Kawahara and Yukiyoshi Kameyama

VxW = x

Vλx.eW = λx.VeW
Vv1 v2W = (Vv1W) (Vv2W)

Vlet x = e in e′W = let x = VeW in Ve′W
Veff W = eff

Vperform eff vW = yield (Eff (Veff W) (VvW))

Vwith h handle eW = VhW (λ .VeW)

Vhandler eff (val x→ ev) ((x, k)→ eeff)W =

let eff = Veff W in

let vh = λx.VevW in

let effh = λx k.Veeff W in

handler eff vh effh

where handler =

let rec handler eff vh effh th =

let co = create th in

let rec continue arg = handle (resume co arg)

and rehandle k arg = handler eff continue effh (λ .k arg)

and handle r =

match r with

| Eff eff ′ v when eff ′ = eff → effh v continue
| Eff → yield (Resend r continue)
| Resend (Eff eff ′ v) k when eff ′ = eff → effh v (rehandle k)
| Resend effv k → yield (Resend effv (rehandle k))
| → vh r

in continue nil

in handler

Fig. 3: Translation from λeff to λac

The term after translation contains the function handler defined in Fig-
ure 3, which works as follows: handler makes a thunk from (λ . · · · · · ·), defines
three functions continue, rehandle and handle, and then evaluates continue nil.
continue passes arg to co, resume-s it, and passes the return value to handle.
handle splits the process from the return value of resume according to the equiv-
alence of tags and effect labels.

When continue is evaluated by passing nil , Eff C1 10 is yield-ed first in the
handled expression and caught by the innermost handler h1. In this case, since it
has an Eff tag and h1 can handle C1, the first pattern of handle matches it. effh

One-shot Algebraic Effects as Coroutines 11

M = let h1 = handler C1

(val v → v) ((x, k)→ kx) in

let h2 = handler C2

(val v → v) ((x, k)→ kx) in

let h3 = handler C3

(val v → v) ((x, k)→ kx) in

with h3 handle

with h2 handle

with h1 handle

let a = perform (C1 10) in

let b = perform (C1 13) in

let c = perform (C3 17) in

a+ b+ c

Fig. 4: Example program in λeff

VMW = let h1 = let vh1 = λv. v in

let effh1 = λx. λk. k v in

handler C1 vh1 effh1 in

let h2 = let vh2 = λv. v in

let effh2 = λx. λk. k v in

handler C2 vh2 effh2 in

let h3 = let vh3 = λv. v in

let effh3 = λx. λk. k v in

handler C3 vh3 effh3 in

h3 (λ . h2 (λ . h1 (λ .

let a = yield (Eff C1 10) in

let a = yield (Eff C1 13) in

let a = yield (Eff C3 17) in

a+ b+ c)))

Fig. 5: Example after translation

is applied to the effect’s argument 10 and a continuation. By passing continue
as the continuation, the computation of a handled expression can be resumed,
which is suspended at the yielded position. And since continue passes the return
value of resume to handle, the effect can be handled by the same handler again.
So a is bound to 10. When Eff C1 13 is yielded in the continuation resumed by
the handler, it is processed by h1 again in the same way, and b is bound to 13.

When the effect C3 is invoked, h1 catches the effect first. h1 can’t handle C3,
so the second pattern of handle matches. The effect is sent to a handler one step
outside, and the effect is processed by that handler. As with invoking an effect,
an effect is re-sent to an outside handler by using a yield. At this time, the tag
Resend wraps the effect and a continuation to indicate resending. Then, as in
the first pattern, pass continue as a continuation.

The resent C3 is captured at h2. Since it has Resend tag and h2 can’t handle
C3, the fourth pattern of handle matches. As in the second pattern, it uses yield
to re-send the effect to an outside handler. At this time, rehandle k is wrapped by
Resend tag as a continuation. rehandle is a function that creates a handler that
handles the thunk of the application of two given arguments. By setting continue
to the value handler, the computation of the current handling expression can
be resumed when the computation of the rehandle passed as a continuation is
finished. rehandle has another role which adjusts the layers of the coroutines.
In the second clause of handle, handle calls yield , so control is exited from one
coroutine. In the third and fourth clauses, we could write λarg .handle (karg)

12 Satoru Kawahara and Yukiyoshi Kameyama

instead of rehandle k, if only to manipulate the return value of the continuation.
In this case, the layers of the coroutines would decrease, and eventually, we would
get an error calling yield outside of coroutine. Therefore rehandle encapsulates
the expression with coroutine internally and avoid to decreasing the layer of
coroutines.

The effect resent again is captured by h3. It has Resend tag and h3 can
handle C3, so the third pattern of handle matches. Same to the fourth pattern,
rehandle k is passed to effh as a continuation. Then it returns 17 to the handled
expression, and c is bound to 17.

The handled expression results in 40. Then h1 receives it, and the fifth wild-
card pattern of handle matches the untagged value, and the value is passed to
the value handler. Same to the h1, h2 and h3 receive the value and pass to the
value handler. Finally the entire expression returns 40.

Although our translation looks complicated, we emphasize that our trans-
lation is compositional and local, syntax-directed, and does not rely on higher-
order stores or other fancy features, but need only basic functionality of asym-
metric coroutines. With this simplicity, several programmers have already ported
our translation to other languages than Ruby and Lua.

3.4 Macro-expressible Translation

We claim that the translation from λeff to λac in the previous section is simple
and efficient. To support the former claim, this subsection shows that it is a
macro-expressible translation in the sense of Felleisen. The latter claim will be
discusses in the subsequent section.

Felleisen studied the notion of macro expressivity, which is a more fine-
grained notion than most others to measure the expressive power of language
primitives [8]. For instance, call/cc (call-with-current-continuation) can be trans-
lated away by a CPS translation to a pure lambda calculus, yet, it is not macro-
expressible in pure lambda calculus since the translation is global. On the other
hand, a simple let expression let x = e1 in e2 can be locally translated by
(λx.e2) e1, therefore, it is macro-expressible in the pure lambda calculus.

While Felleisen defined the notion for the setting where a language L1 is a
proper extension of another language L2, we want to compare the expressive
power of two languages L1 and L2 where L1 and L2 are extensions of a common
language L0. To deal with this setting, we use Forster et al.’s definition for the
macro-expressible translation [10], and we give its slightly simplified version here.

Definition 1 (Macro-expressible translation). Let L0 be a language, and
L1 and L2, resp., be the language L0 augmented with a set of primitives X1, · · · , Xn

and Y1, · · · , Ym, resp. A translation φ from L1 to L2 is macro-expressible trans-
lation if and only if all of the following conditions hold.

– φ is homomorphic for the primitives in L0. For instance, if a binary infix
operator ⊕ is in L0, then φ (e1 ⊕ e2) is φ (e1)⊕ φ (e2).

One-shot Algebraic Effects as Coroutines 13

– φ maps each Xi of arity n to a syntactic expression Mi in L2 which has n
free variables x1, · · · , xn such that the following holds:

φ (Xi(e1, · · · , en)) = Mi [φ (e1) /x1, · · · , φ (en) /xn]

The expression in the right-hand side represents simultaneous substitution
for the variables x1, · · · , xn in Mi.

To state the above definition we have made two simplifications. First, the
equality in this definition should be, in general, semantic equality where we
assume that each language is equipped with a certain semantics, but in this
paper, we can regard it as syntactic equality. Second, we do not consider the
case when Xi works as a binder such as the let expression11, but we do not
need to consider such cases.

It is easy to show that our translation in the previous subsection conforms
the conditions for a macro-expressible translation.

Theorem 1. Our translation in Figure 3 is a macro-expressible translation.

Proof sketch. It is easy to check that our translation V·W is homomorphic for the
variable, lambda abstraction, application, let, the effect expression.

For the primitives of algebraic effects and handlers, we need to check each
case. For the primitive perform, let M be yield (Eff x1 x2), then we have
Vperform e1 e2W = M [Ve1W/x1, Ve2W/x2], and we are done. Other cases are
similar. (end of proof sketch)

As we wrote above, a macro-expressible translation is rather discriminating,
or sensitive to small differences between language primitives. Only local transla-
tions are macro-expressible translation. Since global translations such as a CPS
translation and a state-passing translation do not qualify as macro-expressible
one, state and first-class continuations are not macro-expressible in pure lambda
calculus.

Put differently, if we have a macro-expressible translation for a primitive X in
a language L0, then we can implement X using the translation without changing
any other primitives in L0 This is a simple, but rather important property for
our work, as it is a necessary condition to implement X as a simple library in
L0, unless we have an access to language’s run-time, or reification is allowed.

4 Implementation

We have implemented AEH in Lua and Ruby based on the translation in Sec-
tion 3. Since the translation is macro-expressible, we can realize our implemen-
tation as a simple library. Our implementations are compact. The Lua library is
implemented in 160 lines and the core of the Ruby library is in 340 lines, even
including comments for documentation generation. All our code is available via
Github.

Several issues have arisen in the process of implementation we will address
below.
11 Felleisen considers the case where each argument may be bound by the construct.

14 Satoru Kawahara and Yukiyoshi Kameyama

Multiple Effect Handlers Our calculus λeff has the restriction that a handler
can catch only one effect. However, this restriction is only for the presentation
purpose, and in our actual implementation, one handler may catch multiple
effects, All examples including the examples in this paper that use multiple
effects per handler run without problems using our library. We also note that
there is no critical performance downgrade of having multiple effects per handler.

Dynamic Effect Creation In the language λeff , we have no way to create new
effect labels dynamically. Again this is due to simplicity, and we have eliminated
this restriction in our implementation. The merit of allowing dynamic creation of
effect instances is that a certain kind of effectful programs needs the uniqueness
of effect instances, for instance, higher-order effects[16].

Conflict with Other Effects An assumption on our translation is that all effects
are written via AEH. If our source program uses other effects besides AEH, it
will cause a serious problem, since other effects may interfere with the internally
used coroutines. For instance, if we use our library in Lua, and simultaneously
use Lua’s native coroutine directly, yielding a value in the source program may
be accidentally caught by an internal coroutine. As consequence we must not
use native coroutines with (our implementation of) AEH.

This problem can be solved as follows, thanks to the expressivity of AEH.
See the following code.

1 local Yield = inst()

2

3 local yield = function(v)

4 return perform(Yield, v)

5 end

6

7 local create = function(f)

8 return { it = f, handled = false }

9 end

10

11 local resume = function(co, v)

12 if co.handled then

13 return co.it(v)

14 else

15 co.handled = true

16 return handler({

17 val = function(x) return x end,

18 [Yield] = function(u, k)

19 co.it = k

20 return u

21 end

22 })(function() return co.it(v) end)

23 end

One-shot Algebraic Effects as Coroutines 15

24 end

The code above is an implementation of asymmetric coroutines by algebraic
effects and handlers in Lua. The function yield should throw a value to resume

, so yield should be an effect invocation and resume should be a handler. This
correspondence is the inverse of the translation in Figure 3. So we define Yield

effect (line 1) and yield function (line 3) as a wrapper for the invocation of
the effect. The function create (line 7) creates a reference cell by a table. We
represent a coroutine as a reference cell, which is initialized to the function f and
the flag handled explained later. The handler resume (line 11) catches Yield

effect with an argument and a continuation. This continuation is the rest of
computation of the coroutine, so the handler stores the continuation to the cell
and returns the value u (line 19 and 20). Since we provide a deep handler, it is
not necessary to set the handler multiple times. The tag handled is to assert
if the function is handled by the handler or not (line 12). The function resume

checks the flag; if the flag is off, resume turns on the flag and runs the function
with the handler. Otherwise, resume runs the function only.

Although we believe that the above technique may be used in other compu-
tation effects, it is left for future work to combine them with algebraic effect and
handlers without big downgrade of performance.

5 Evaluation

We have conducted experiments on microbenchmark using our library in Lua,
and implementation in Lua based on free monads [23], and compare their per-
formance. All the code for the benchmark is publicly available in the GitHub
repository12. In the following figures, the symbol N represents the result of our
library, and � does of the free-monad based implementation. One of the bench-
marks compares to native coroutines of Lua and indicates the result as the
symbol ? in a graph. The experiments have been conducted on the environment
in Table 1.

Table 1: Environment for Benchmark
OS Arch Linux

CPU Intel Core i7-8565U

Main memory 16GB DDR4

Lua processor LuaJIT 2.05

Figure 6 is the result of the benchmark for emulating a state monad. The
benchmark uses the function count, cited from [14], adjusted for our library and
free monad, and recursively runs a simple computation consisting of one-layer

12 https://github.com/nymphium/effs-benchmark

https://github.com/nymphium/effs-benchmark

16 Satoru Kawahara and Yukiyoshi Kameyama

2 3 4 5
·105

0.5

1

1.5

2

param

time(sec)

param (105×) 1 2 3 4 5

free 0.3560 0.7199 1.1741 1.5449 2.0303

ours 0.0273 0.0521 0.0939 0.1811 0.2090

Fig. 6: Result of onestate benchmark

one-effect handlers for the number of times as the input parameter. The result
shows that our library is approx. 10 times faster than the free-monad based
implementation for this simple case. The reason why free monads are rather
slow is that the bind operator requires a continuation as the next action, but
the cost for creating function closures is rather high for imperative languages
such as Lua. Also, functional languages such as Haskell may offer optimization
for free monads, while the benchmark uses naive implementation. Nevertheless,
the results are encouraging for our embedding.

In the next experiments in Figure 7, the benchmark program iterates count
function 3,000 times in deeply nested handlers. The parameter in the table

20 30 40 50

0.2

0.4

param

time(sec)

param (10×) 1 2 3 4 5

free 0.0174 0.0303 0.0508 0.1374 0.1594

ours 0.0572 0.1722 0.3181 0.4064 0.5041

Fig. 7: Result of multistate benchmark

corresponds to the number of nested handlers/coroutines, hence 50 (the right-
most column) is already a rather unrealistic situation, but we included this
experiment as an extreme. As expected, our library runs three times slower than
the free monad does for this case. The reason is that rehandle creates a new
coroutine, which is called every time an effect is caught from the other handler
shown in Figure 3, so it degrades the performance.

In the next experiment, the function looper performs algebraic effects in the
iteration of the for loop, where the number of iteration is given as a parameter

One-shot Algebraic Effects as Coroutines 17

shown in the table of Figure 8. The benchmark program invokes an effect in a

2 3 4 5
·105

0.2

0.4

0.6

0.8

param

time(sec)

param (105×) 1 2 3 4 5

free 0.1650 0.3455 0.5304 0.7204 0.9319

ours 0.0215 0.0416 0.0630 0.0844 0.1064

Fig. 8: Result of looper benchmark

for-loop and sets a handler out of the loop to catch the effect. Our library runs
9 times as fast as the free-monad based implementation. Note that free monads
need the forM-operator which has large overhead. Again an advanced compiler
may be able to eliminate all or part of this overhead.

Figure 9 shows the result of the benchmark, which solves the same-fringe
problem [11] by using algebraic effects and coroutines. The problem is to deter-

2 3 4 5
·104

0.2

0.4

param

time(sec)

param (104×) 1 2 3 4 5

free 0.0507 0.1837 0.3522 0.4761 0.5886

ours 0.0067 0.0127 0.0186 0.0252 0.0296

coroutines 0.0042 0.0082 0.0119 0.0158 0.0190

Fig. 9: Result of same_fringe benchmark

mine whether given two trees have the same “fringe”, an enumeration of leaves
of the tree in a certain order. The benchmark is given the number of leaves as
a parameter. We implement coroutines to solve it, by algebraic effects with free
monad, and our library, described in Section 4. We also implement the solver
with native coroutines of Lua. Our library yields 18 times performance gain
compared to the free-monad method. Remarkably, our library is only 1.6 times
slower than native coroutines.

In summary, our way of implementing AEH is advantageous in several pro-
gramming languages from the performance viewpoint. We also emphasize that

18 Satoru Kawahara and Yukiyoshi Kameyama

writing effectful programs using coroutines is harder than writing the same pro-
grams using AEH, which provide high-level abstraction.

6 Related Work and Discussion

In this section, we discuss closely related work which has not been mentioned in
this paper and picks up a few important issues for discussion.

Shallow Handler We have shown the embedding with deep handlers, which can
catch the effect invocation even during the execution of the continuation.

In the literature, there has been a discussion on deep vs shallow handlers [12],
and it has its own merits. We have also implemented the shallow handler with
coroutines shown in Figure 10. The idea is simple; after a handler catches an

Vhandler† eff (val x→ ev) ((x, k)→ eeff)W =

let eff = Veff W in

let vh = λx.VevW in

let effh = λx k.Veeff W in

handler† eff vh effh

where handler† =

let rec handler eff vh effh th =

let co = create th in

let rec continue arg = handle (resume co arg)

and rehandle k arg = handler eff continue effh (λ .k arg)

and continue0 = resume co

and rehandle0 k = resume (create k)

and handle r =

match r with

| Eff eff ′ v when eff ′ = eff → effh v continue0

| Eff → yield (Resend r continue)
| Resend (Eff eff ′ v) k when eff ′ = eff → effh v (rehandle k)
| Resend effv k → yield (Resend effv (rehandle0 k))
| → vh r

in continue nil

in handler

Fig. 10: translation from shallow handlers to coroutines

One-shot Algebraic Effects as Coroutines 19

effect, it always resends any effects to the outer handler. We have explained
the role of rehandle in Figure 3 that it encapsulates the continuation with a
coroutine to adjust the layer of coroutines, and rehandles the effect invocation
in the continuation. In the shallow setting, it is also necessary to reset the number
of the layer of coroutines, which might degrade the performance. On the other
hand, rehandling is not needed because it is shallow.

One-shot Continuations It should be noted that we are not the first to study
the one-shot variant of control operators. Bruggeman et al. give an one-shot
control operator call/1cc with the observation that almost continuations are run
at most once [5]. When a compiler knows a continuation can be run at most once,
it can generate more sophisticated code. They state that, by replacing call/cc
using continuations at most once for call/1cc, program can be run with less
memory consumption and higher performance. Berdine et al demonstrate that
many control abstractions can be translated into typed CPS including one-shot
continuations, with linear-types [2].

James and Sabry stated that the yield operator for generator, which is a
restricted variant of coroutines and can be found in various languages, is one-
shot delimited continuations [13]. They also defined a generalized yield operator
which has multi-shot continuations and show the connection between it and the
delimited-control operators.

Multicore OCaml is a dialect of OCaml which natively supports algebraic
effects by runtime stack manipulation. Its motivation is to write concurrent
programming in direct-style[7]. They provide one-shot continuations due to the
performance problem, and if multi-shot continuations are needed, they allow
explicit copy for continuations.

Free monad We have already compared our with with free-monad based im-
plementations of algebraic effects. On the positive side, it gives a systematic
and elegant implementation for various effects. Its downside is it has significant
overhead in performance. We also point out that our embedding-based imple-
mentation does not interfere with surface languages, while free-monad based
implementations force a programmer to use monadic style, which is good for
some programmers, but is not for others. With our implementation, the surface
language with algebraic effects and handlers can be presented in direct style or
monadic style.

7 Conclusion

We have presented a novel embedding technique for algebraic effects and handlers
into asymmetric coroutines, and shown translation from the former to the lat-
ter as simple, direct, syntax-directed compositional translation. Compared with
other embeddings or other ways, our technique can apply to many languages
which have coroutines due to the simplistic nature of our embedding. We have
demonstrated the applicability of our embedding by implementing the libraries

20 Satoru Kawahara and Yukiyoshi Kameyama

in Lua and Ruby. Our technique seems to be attractive for other researchers,
and some of them have implemented our translation for other languages such
as JavaScript and Rust. We expect that the simplicity of our implementation is
advantageous to be used by more people, more languages, and more applications.

The key of our development is the one-shotness restriction of continuations.
Our embedding uses the rest of the coroutine thread as a continuation, and the
status of the coroutine cannot be copied, so the limitation exists that a con-
tinuation can be executed at most once. One-shotness is a dynamic property,
and its static approximation, linearly used (delimited) continuations, or linear
continuation-passing style, are the target of active research in the past. We hope
that the formal foundation of this paper’s result is studied more deeply, and
coroutines and their connection with other control operators find a solid theo-
retical foundation.

We briefly state future work. There are many directions to extend our work.
Of particular interest is to prove the semantics preservation of our translation.
Introducing an appropriate type system is also an interesting next step. Another
exciting issue is to relate and compare various control abstractions in the litera-
ture and in the practical programming languages. For instance, React, a popular
web framework for JavaScript, has a utility software Hooks13, which allows pro-
grammers to build components with side-effects modularly. Abramov pointed
out the relevance between Hooks and algebraic effects in his blog post14, and we
think that investigating this relationship based on our work is promising.

References

1. Bauer, A., Pretnar, M.: Programming with Algebraic Effects and Handlers. Journal
of Logical and Algebraic Methods in Programming 84, (03 2012)

2. Berdine, J., O’Hearn, P., Reddy, U., Thielecke, H.: Linear Continuation-Passing.
Higher-Order and Symbolic Computation 15, 181–208 (09 2002)

3. Brachthäuser, J., Schuster, P.: Effekt: extensible algebraic effects in Scala (short
paper). pp. 67–72 (10 2017)

4. Brachthäuser, J., Schuster, P., Ostermann, K.: Effect handlers for the masses.
Proceedings of the ACM on Programming Languages 2, 1–27 (10 2018)

5. Bruggeman, C., Waddell, O., Dybvig, R.: Representing Control in the Presence of
One-Shot Continuations. vol. 31, p. (02 1970)

6. Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming. p. 151–160 (1990)

7. Dolan, S., White, L., Madhavapeddy, A.: Multicore OCaml. In: OCaml Users and
Developers Workshop (2014)

8. Felleisen, M.: On the Expressive Power of Programming Languages. In: Selected
Papers from the Symposium on 3rd European Symposium on Programming. p.
35–75. ESOP ’90, Elsevier North-Holland, Inc., USA (1991)

9. Felleisen, Matthias and Daniel P. Friedman: Control operators, the SECD-machine,
and the λ-calculus. In: Formal Description of Programming Concepts (1987)

13 https://reactjs.org/docs/hooks-reference.html
14 https://overreacted.io/algebraic-effects-for-the-rest-of-us/

https://reactjs.org/docs/hooks-reference.html
https://overreacted.io/algebraic-effects-for-the-rest-of-us/

One-shot Algebraic Effects as Coroutines 21

10. Forster, Y., Kammar, O., Lindley, S., Pretnar, M.: On the expressive power of user-
defined effects: Effect handlers, monadic reflection, delimited control. J. Funct.
Program. 29, e15 (2019). https://doi.org/10.1017/S0956796819000121, https://
doi.org/10.1017/S0956796819000121

11. Gabriel, R.P.: The Design of Parallel Programming Languages, p. 91–108. Aca-
demic Press Professional, Inc., USA (1991)

12. Hillerström, D., Lindley, S.: Shallow Effect Handlers. In: Asian Symposium on
Programming Languages and Systems. pp. 415–435. Springer (2018)

13. James, R., Sabry, A.: Yield: Mainstream Delimited Continuations. p. (01 2011)

14. Kammar, O., Lindley, S., Oury, N.: Handlers in Action. vol. 48, pp. 145–158 (09
2013)

15. Kiselyov, O., Ishii, H.: Freer Monads, More Extensible Effects. ACM SIGPLAN
Notices 50, (03 2015)

16. Kiselyov, O., Sivaramakrishnan, K.: Eff Directly in OCaml. Electronic Proceedings
in Theoretical Computer Science 285, 23–58 (12 2018)

17. Leijen, D.: Algebraic Effects for Functional Programming. Tech. rep., Technical
Report. 15 pages. (2016)

18. Leijen, D.: Implementing Algebraic Effects in C. pp. 339–363 (11 2017)

19. Materzok, M., Biernacki, D.: Subtyping delimited continuations. In:
Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th
ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011. pp. 81–93. ACM (2011).
https://doi.org/10.1145/2034773.2034786, https://doi.org/10.1145/2034773.
2034786

20. Moura, A.d., Ierusalimschy, R.: Revisiting Coroutines. ACM Transactions on Pro-
gramming Languages and Systems 31, (07 2004)

21. Plotkin, G., Power, J.: Algebraic Operations and Generic Effects. Applied Cate-
gorical Structures 11, 69–94 (02 2003)

22. Plotkin, G., Pretnar, M.: Handling Algebraic Effects. Logical Methods in Computer
Science 9, (12 2013)

23. Pretnar, M., Saleh, A.H., Faes, A., Schrijvers, T.: Efficient compilation of algebraic
effects and handlers. CW Reports, volume CW708 32 (2017)

A Semantics of λeff

A.1 Helper functions

We introduce three helper functions for semantics in Figure 11:

https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/2034773.2034786

22 Satoru Kawahara and Yukiyoshi Kameyama

split
((

(with w handle �)eff :: K
)
, eff

)
=
(

[] , (with w handle �)eff ,K
)

split ((F :: K) , eff) =
(
F :: K′, F ′,K′′

)
where F 6= (with w handle �)eff

and
(
K′, F ′,K′′

)
= split (K, eff)

LF :: KM = λx. LKM F [x]

L [] M = λx. x

K ∗ E = clos (λx.LKM x,E)

Fig. 11: Helper Functions for Semantics

split (K, eff) returns a triple (K1, F,K2) where F is the frame that handles the
effect named by eff, and K = K1 :: [F] :: K2 holds. If more than one frame can
handle the effect eff, the first one is selected, and if none have the named effect,
the result is undefined. LKM converts a stack K to a continuation in functional
form. (K ∗ E) creates a closure with a stack frame K and an environment E.

A.2 Small-step semantics

Figure 12 defines the small-step, call-by-value, left-to-right semantics (−→eff) in
the CEK-machine style [9].

In the rule Lookup, E (x) is the value associated with the variable x in the
environment E. The rules PushLet, Bind, and Close, PushApp, PushArg,
and App are standard. The rest of the rules are the one for algebraic effects and
handlers. The rules PushWithHandle and CloseHandler push or pop eval-
uation contexts to the stack. The rule Handle manipulates a with-expression
with h handle e: if h evaluates to a handler value, then e is going to be evaluated
under this handler. The rule PushPerform pushes the frame of perform-ing
an effect eff to the stack. The rules HandlePerform and HandleValue are
the key rules for algebraic handlers. In the rule HandlePerform, the code
component is a value w. Hence, the first frame in the stack perform eff � is
retrieved and evaluated. Then we look for a handler whose name is eff in the
stack K, and if we find it, we use the handler to cope with this effect where
formal parameters y and k are bound to the value w and the delimited continu-
ation K ′ under environment E. We adopt the deep handlers, hence the handler
(with wh handle �)

eff
remains in the stack after this step. The rule Handl-

eValue is used when the handled expression does not invoke an effect and
returns a value w. Then the value handler (val x→ ev) is used, and the handler
is eliminated from the stack after this step.

One-shot Algebraic Effects as Coroutines 23

B Semantics of λac

Auxiliary functions Figure 13 defines two auxiliary functions for pattern match-
ing of λac . FV p (pat) is the set of free variables in pat. matchable (v, pat) is a
predicate to assert that,given a value v and a pattern pat, the value matches the
pattern. The operator ⊕ concatenates two stores and ∅ is an empty store. The
function genstore creates a new store which consists of pairs of a variable and
a value (which consists of constructors). For example, by calling genstore with
the arguments Resend (Eff w v) u (for some values w, v and u), and a nested
pattern Resend (Eff y x) k, we get a new store ∅ [y ← w , x← v, k ← u].

Small-step Semantics Figure 14 shows the operational semantics of λac by the
transition (−→ac) of the state 〈e, θ〉, an expression e and a store θ. dom (θ) is
the domain of θ, and θ (x) is a value associated with the variable x. Note that
even if θ (l) = nil, we include l in dom (θ). In those cases such as introducing a
variable or a label (App, Let, LetRec, Create, Match, and MatchWhen),
we identify α-equivalent terms and assume that we rename bound variables
appropriately for substitution to be defined at any time. The distinctive pattern

is similar to a variable but generates no binding after pattern matching, so we
allow to be overwritten. The rules contain those for variable lookup (Lookup),
function application (App), let, and let rec (Let and LetRec). The function
Create is to make a new coroutine. It creates a fresh label l, binds the coroutine
to l, and returns its label to the context C. The function Resume produces a
labelled expression, an application θ (l) v with a label l. θ (l) v is what finds
the body corresponding to the label l from θ and apply v. The created labelled
expression l : θ (l) v expresses the computation in the coroutine labelled by
l. To prevent the rest of the coroutine from being referred, the rule Resume
invalidates the associated

value by setting it to nil. The function Yield suspends the current com-
putation of a coroutine and returns to the parent coroutine with an argument.
Since the target calculus represents asymmetric coroutines, a coroutine can be
a parent of another coroutine by resuming it. The rule have an assumption that
C2 does not have any labelled expresses. The assumption indicates that C2 is
the innermost active coroutine. The function LabelledReturn transfers the
result of the computation v in the coroutine l to its caller. The functions EqT
and EqF compare two effect operations. The operator =eff judges whether two
given effects are the same. The functions Match and MatchWhen are for
pattern-matching. The second rule applies when K −→v matches a pattern, and
the match case has a guard c. This rule transforms the guard to another match
expression, with assigning the values to the corresponding variables in the pat-
tern. The assignment may affect pattern variables in the guard c. If a guard
returns True, pattern matching is successful, and the body of the True clause is
evaluated; otherwise, we go to match against the rest of the patterns.

24 Satoru Kawahara and Yukiyoshi Kameyama

〈C; E; K〉 −→eff 〈C′; E′; K′〉

〈x; E; K〉 −→eff 〈E (x) ; E; K〉 (Lookup)

〈let x = e in e′; E; K〉 −→eff 〈e; E; (let x = � in e′, E) :: K〉 (PushLet)

〈w; E; (let x = � in e, E′) :: K〉 −→eff 〈e; (x = w) :: E′; K〉 (Bind)

〈λx. e; E; K〉 −→eff 〈clos (λx.e, E) ; E; K〉 (Close)

〈e e′; E; K〉 −→eff 〈e; E; (� e′, E) :: K〉 (PushApp)

〈w; E; (� e, E′) :: K〉 −→eff 〈e; E′; (w �) :: K〉 (PushArg)〈
w; E;

(
clos (λx.e, E)′ �

)
:: K

〉
−→eff 〈e; (x = w) :: E′; K〉 (App)

〈with h handle e; E; K〉 −→eff 〈h; E; (with � handle e, E) :: K〉
(PushWithHandle)

〈h; E; K〉 −→eff 〈closh (h,E) ; E; K〉
where h = handler eff (val x→ ev) ((x, k)→ eeff)

(CloseHandler)

〈 wh;
E′;

(with � handle e, E) :: K

〉
−→eff

〈 e;
E;(

(with wh handle �)eff
)

:: K

〉
where wh = closh (handler eff (val x→ ev) ((x, k)→ eeff) , E)

(Handle)

〈perform eff v; E; K〉 −→eff 〈v; E; (perform eff �) :: K〉 (PushPerform)

split (K, eff) =
(
K′, (with wh handle �)eff ,K′′

)
where wh = closh (handler eff (val x→ ev) ((y, k)→ eeff) , E′)

〈w; E; (perform eff �) :: K〉 −→eff

〈 eeff ;
(y = w) :: (k = K′ ∗ E) :: E′;

(with wh handle �)eff :: K′′

〉
(HandlePerform)

F = (with wh handle �)eff

where wh = closh (handler eff (val x→ ev) ((y, k)→ eeff) , E′)

〈w; E; F :: K〉 −→eff 〈ev; (x = w) :: E′; K〉
(HandleValue)

Fig. 12: Semantics of λeff

One-shot Algebraic Effects as Coroutines 25

FV p

(
K
−→
pat
)

=
⋃
p ∈ −→pat .FV p (p)

FV p (x) = {x}

matchable
(
K −→v ,K′ −→pat

)
= K =K K′ ∧ ∀v ∈ −→v , p ∈ −→pat .matchable (v, p)

θ1 ⊕ θ2 = ∅
[
∀x ∈ dom (θ1) .x← θ1 (x) ,
∀y ∈ dom (θ2) .y ← θ2 (y)

]

genstore
(
K −→v ,K −→pat

)
=

⊕
v∈−→v ,p∈−→pat

genstore (v, p)

genstore (v, x) = ∅ [x← v]

Fig. 13: Auxiliary functions for the semantics of λac

26 Satoru Kawahara and Yukiyoshi Kameyama

〈C[x], θ〉 −→ac 〈C[θ(x)], θ〉 (Lookup)

x /∈ dom (θ)

〈C [(λx.e) v] , θ〉 −→ac 〈C [e] , θ [x← v]〉
(App)

x /∈ dom (θ)

〈C[let x = v in e′], θ〉 −→ac 〈C[e], θ[x← v]〉
(Let)

∀z ∈
{
f,−→x ,

−−→
g,−→y

}
.z /∈ dom (θ)〈

C

let rec f −→x = ef−−−−−−−−−→
and g −→y = eg
in e

 , θ〉 −→ac

〈
C[e], θ

[
f ← λ−→x .ef ,−−−−−−−→
g ← λ−→y .eg

]〉 (LetRec)

l /∈ dom (θ)

〈C [create v] , θ〉 −→ac 〈C [l] , θ [l← v]〉
(Create)

〈C [resume l v] , θ〉 −→ac 〈C [l : θ (l) v] , θ [l← nil]〉 (Resume)

C2 does not contains labelled expressions

〈C1 [l : C2 [yield v]] , θ〉 −→ac 〈C1 [v] , θ [l← λx.C2 [x]]〉
(Yield)

〈C [l : v] , θ〉 −→ac 〈C [v] , θ〉 (LabelledReturn)

eff =eff eff ′

〈C [eff = eff ′] , θ〉 −→ac 〈C [True] , θ〉
(EqT)

eff 6=eff eff ′

〈C [eff = eff ′] , θ〉 −→ac 〈C [False] , θ〉
(EqF)

¬matchable (K −→v , pat)〈
C

match K −→v with

pat [cond]→ e;
cases

 , θ〉 −→ac 〈C [match K −→v with cases] , θ〉

(MatchNext)

∀x ∈ FV p (pat) .x /∈ dom (θ) matchable (K −→v , pat)
θ′ = θ ⊕ genstore (K −→v , pat)

〈C [match K −→v with pat → e; cases] , θ〉 −→ac 〈C[e], θ′〉
(Match)

∀x ∈ FV p (pat) .x /∈ dom (θ) matchable (K −→v , pat)
θ′ = θ ⊕ genstore (K −→v , pat)

〈
C

match K −→v with

pat when c→ e;
cases

 , θ〉 −→ac

〈
C


match c with
True → e;
False →
match K −→v with

cases

 , θ′
〉

(MatchWhen)

Fig. 14: Semantics of λac

	One-shot Algebraic Effects as Coroutines

