
Type Checking and Typability in

Domain-Free Lambda Calculi

Koji Nakazawa a,∗

aGraduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Makoto Tatsuta b

bNational Institute of Informatics, Japan

Yukiyoshi Kameyama c

cDepartment of Computer Science, University of Tsukuba, Japan

Hiroshi Nakano d

dDepartment of Applied Mathematics and Informatics, Ryukoku University, Japan

Abstract

This paper shows (1) the undecidability of the type checking and the typability
problems in the domain-free lambda calculus with negation, product, and existen-
tial types, (2) the undecidability of the typability problem in the domain-free poly-
morphic lambda calculus, and (3) the undecidability of the type checking and the
typability problems in the domain-free lambda calculus with function and existen-
tial types. The first and the third results are proved by the second result and CPS
translations that reduce those problems in the domain-free polymorphic lambda cal-
culus to those in the the domain-free lambda calculi with existential types. The key
idea is the conservativity of the domain-free lambda calculi with existential types
over the images of the translations.

Key words: Existential Type, Type Checking, Typability, Undecidability, CPS
Translation, Domain-Free Type System

∗ Corresponding author.
Email address: knak@kuis.kyoto-u.ac.jp (Koji Nakazawa).

Preprint submitted to Elsevier 10 June 2011

1 Introduction

The polymorphic lambda calculus has been widely investigated since the mon-
umental works due to Girard [7] and Reynolds [17]. On the other hand, the ex-
istential type, which corresponds to the second-order existence in logic through
the Curry-Howard isomorphism, has been also studied actively from the point
of view of computer science since Mitchell and Plotkin [11] showed that ab-
stract data types are existential types.

The existential types also give a suitable target calculus for continuation-
passing-style (CPS) translations. Thielecke showed that the negation (¬) and
conjunction (∧) fragment of a lambda calculus suffices for a CPS calculus
[21] as the target of various first-order calculi. Recent studies on CPS transla-
tions for polymorphic calculi have shown that the ¬ ∧ ∃-fragment of lambda
calculus is an essence of a target calculus of CPS translations for various poly-
morphic calculi, such as the polymorphic lambda calculus [5], the lambda-mu
calculus [3,9], and delimited continuations [10]. In [10], Hasegawa showed that
the ¬ ∧ ∃-fragment is suitable as a target calculus of a CPS translation for
delimited continuations such as shift and reset [2].

Domain-free type systems [1], which are in an intermediate style between
Church and Curry styles, are useful for considering some extension of poly-
morphic calculi and for theoretical studies on CPS translations. In domain-free
style lambda calculi, the type of a bound variable is not explicit in λx.M as in
Curry style, whereas terms contain type information for second-order quanti-
fiers as in Church style, such as a type abstraction λX.M for ∀-introduction
rule, and a term 〈A,M〉 with a “witness” A for ∃-introduction rule. In [8],
it is shown that an extension of the Damas-Milner polymorphic type assign-
ment system, which can be seen as a Curry-style formulation, with a control
operator destroys the type soundness. In [3], Fujita showed that the Curry-
style lambda-mu calculus, which is an extension of the polymorphic lambda
calculus, does not have the subject reduction property, and he introduced a
domain-free lambda-mu calculus λV µ which has the subject reduction prop-
erty. In addition, the ¬ ∧ ∃-fragment of the domain-free lambda calculus works
as a target calculus of a CPS translation for λV µ.

For type systems, the following decision problems are of great importance.
Type checking (TC), which is symbolically described by Γ ` M : A?, asks
whether Γ ` M : A is derivable for given Γ, M , and A. Typability (TP) asks
whether there exist a context Γ and a type A such that Γ ` M : A is derivable
for given M . Strong typability (STP) is a generalization of TP, and it asks
whether there exist an extension Γ′ of Γ and a type A such that Γ′ ` M : A
is derivable for given M and Γ. Type inhabitation (INH) asks whether there
exists a term M such that ` M : A is derivable for given A. The problem INH

2

corresponds to provability of the formula A.

For polymorphic lambda calculi, some of these decision problems were given
answers in the literature. Wells [23] showed undecidability of TC and TP in
the Curry-style polymorphic lambda calculus, which we call Curry-F in this
paper. Barthe and Sørensen [1] showed undecidability of TC and STP in the
domain-free polymorphic lambda calculus, which we call DF-F , and Fujita
and Schubert [4] independently showed the same result. However they did not
show undecidability of TP in DF-F , which is stronger than the undecidability
of STP.

By contrast, these decision problems for existential types have not been studied
sufficiently, and we know only the following results. INH in the second-order
propositional logic with logical connectives ¬, ∧, ∀, and ∃ was proved to be
decidable in [20], and INH in the logic with ⊥, →, ∧, ∨, and ∃ was proved
to be undecidable in [19]. Fujita and Schubert [6] studied the problems in the
lambda calculi with existential types in the Curry style and the type-free style.

This paper proves undecidability of the type checking and the typability prob-
lems in domain-free lambda calculi with polymorphic and existential types.
First, we show undecidability of TP in the domain-free polymorphic lambda
calculus DF-F . Secondly, we show undecidability of TC and TP in the follow-
ing domain-free lambda calculi with existential types: (1) a ¬ ∧ ∃-fragment
DF-λ¬∧∃, (2) the system DF-λ¬∧∃

g of the ¬ ∧ ∃-fragment with a generalized
∧-elimination rule, and (3) an →∃-fragment DF-λ→∃. Our results show that
the system DF-λ¬∧∃ is interesting, because Tatsuta et al. [20] showed the de-
cidability of INH in it, while ours shows the undecidability of its TC and TP.
So far we know few type systems that have this property except for trivial
cases.

In order to prove undecidability of TP in DF-F , we show that TC can be
reduced to TP in DF-F by a computable translation. Hence undecidability of
TP follows from that of TC, which has already been proved in [1,4].

In order to prove undecidability of TC and TP for existential types, we reduce
it to undecidability of TC and TP in DF-F . For DF-λ¬∧∃, we define a negative
translation (·)• from types of DF-F to types of DF-λ¬∧∃, and a translation [[·]]
from terms of DF-F to terms of DF-λ¬∧∃, which is a variant of the call-by-name
CPS translation in [5]. We will show that Γ ` M : A is derivable in DF-F if
and only if ¬Γ• ` [[M]] : ¬A• is derivable in DF-λ¬∧∃. Hence undecidability of
TC in DF-λ¬∧∃ follows from the undecidability of TC in DF-F . By the same
idea, we can show that undecidability of TP in DF-λ¬∧∃ also follows from that
in DF-F .

The key of the proof is to show that ¬Γ• ` [[M]] : ¬A• in DF-λ¬∧∃ implies
Γ ` M : A in DF-F . For a DF-F -term M , a type derivation of ¬Γ• ` [[M]] : ¬A•

3

TC STP TP INH

Systems Γ ` M : A? Γ, ? ` M :? ? ` M :? `? : A

Curry-F no[23] no no[23] no

DF-F no[1,4] no[1,4] NO

DF-λ¬∧∃ NO NO NO yes[20]

DF-λ¬∧∃
g NO NO NO yes

DF-λ→∃ NO NO NO unknown

Fig. 1. Decidability of TC, STP, TP and INH

in DF-λ¬∧∃ may contain a type B which is not any CPS type, where CPS
types are defined as types in the form of ¬C• for some type C of DF-F . If a
derivation contains such a type B, it does not correspond to any derivation
in DF-F . However, in fact, we can define a contraction transformation that
maps types of DF-λ¬∧∃ to CPS types so that, from any type derivation of
¬Γ• ` [[M]] : ¬A•, we can construct another type derivation of the same
judgment in which every type is a CPS type. By this we can pull it back to a
derivation in DF-F .

We summarize related results about decidability of TC, STP, TP, and INH in
several systems in Figure 1, where “yes” means that the problem is decidable
and “no” means undecidable. The results of this paper are denoted by “NO”.
Note that provability in the ¬ ∧ ∃-fragment DF-λ¬∧∃

g with general elimination
rules is equivalent to provability in the ¬ ∧ ∃-fragment DF-λ¬∧∃ with the or-
dinary elimination rules, so INH in DF-λ¬∧∃

g is the same problem as INH in
DF-λ¬∧∃.

Section 2 introduces the domain-free lambda calculi DF-F with polymorphic
types and DF-λ¬∧∃ with existential types. Section 3 gives our main theorems
which state undecidability of TP in DF-F , and TC and TP in DF-λ¬∧∃. Section
4 proves undecidability of TP in DF-F . Section 5 proves undecidability of TC
and TP in DF-λ¬∧∃, and applies the idea to DF-λ¬∧∃

g . Section 6 discusses
CPS translations for various systems to show that DF-λ¬∧∃ is suitable for a
target of CPS translations. Section 7 shows undecidability of TC and TP in a
domain-free typed lambda calculus DF-λ→∃ with implication and existence.

2 Domain-Free Lambda Calculi

In this section, we introduce two domain-free lambda calculi: one is the
domain-free polymorphic lambda calculus DF-F , and the other is the negation,

4

conjunction, and existence fragment DF-λ¬∧∃ of domain-free lambda calculus.

2.1 Polymorphic Lambda Calculus

First, we introduce the domain-free variant DF-F of the polymorphic lambda
calculus.

Definition 1 (DF-F) (1) The language of the system DF-F contains type
variables (denoted by X, Y ,. . .) and term variables (denoted by x, y,. . .).
The types (denoted by A, B,. . . , and called →∀-types), and the terms
(denoted by M , N ,. . .) of DF-F are defined by

A ::= X | (A→A) | (∀X.A),

M ::= x | (λx.M) | (λX.M) | (MM) | (MA),

Outermost parentheses are often omitted. For n ≥
3, A1→A2→· · ·→An denotes A1→(A2→(· · ·→An)).
For m,n ≥ 0, λx1x2 · · · xm.M1M2M3 · · ·Mn denotes
(λx1.(λx2.(· · · (λxm.((· · · ((M1M2)M3) · · ·)Mn)) · · ·))). In the type
∀X.A, the variable X is bound in A. In the term λx.M , the variable
x is bound in M . In the term ΛX.M , the variable X is bound in M .
A variable occurrence is free if it is not bound. We use ≡ to denote
syntactic identity modulo renaming of bound variables. In the system
DF-F , the symbol ⊥ denotes ∀X.X. The ordinary capture-avoiding
substitution for types is denoted by A[X := B].

(2) A context (denoted by Γ, Γ1,. . .) is defined as a finite set of type as-
signments in the form of (x : A). We suppose that A ≡ B holds if both
(x : A) and (x : B) are in Γ. We write Γ, x : A for Γ∪{x : A}, and Γ1, Γ2

for Γ1 ∪ Γ2. The typing rules of DF-F are the following.

Γ, x : A ` x : A
(Ax)

Γ, x : A ` M : B

Γ ` λx.M : A→B
(→I)

Γ1 ` M : A→B Γ2 ` N : A
Γ1, Γ2 ` MN : B

(→E)

Γ ` M : A
Γ ` λX.M : ∀X.A

(∀I)
Γ ` M : ∀X.A

Γ ` MB : A[X := B]
(∀E)

In the rule (∀I), the lower sequent must not contain X freely. We write
Γ `DF-F M : A to denote that Γ ` M : A is derivable in DF-F .

5

2.2 Lambda Calculus with Negation, Conjunction and Existence

We define the domain-free lambda calculus DF-λ¬∧∃ with negation (¬), con-
junction (∧), and existence (∃).

Definition 2 (DF-λ¬∧∃) (1) The language of DF-λ¬∧∃ contains type vari-
ables (denoted by X, Y ,. . .), a type constant ⊥, and term variables (de-
noted by x, y,. . .). The types (denoted by A, B,. . . , and called ¬ ∧ ∃-
types) and the terms (denoted by M , N ,. . .) of DF-λ¬∧∃ are defined by

A ::= X | ⊥ | ¬A | (A ∧ A) | (∃X.A),

M ::= x | (λx.M) | 〈M,M〉 | 〈A,M〉
| (MM) | (Mπ1) | (Mπ2) | (M [Xx.M]).

Outermost parentheses are often omitted. In the type ∃X.A, the variable
X is bound in A. In the term λx.M , the variable x is bound in M . In the
term N [Xx.M], the variables X and x are bound in M .

(2) The definition of the contexts is similar to DF-F , and ¬Γ is defined as
{(x : ¬A)|(x : A) ∈ Γ}. The typing rules of DF-λ¬∧∃ are the following.

Γ, x : A ` x : A
(Ax)

Γ, x : A ` M : ⊥
Γ ` λx.M : ¬A

(¬I)
Γ1 ` M : ¬A Γ2 ` N : A

Γ1, Γ2 ` MN : ⊥ (¬E)

Γ1 ` M : A Γ2 ` N : B

Γ1, Γ2 ` 〈M, N〉 : A ∧ B
(∧I)

Γ ` N : A[X := B]

Γ ` 〈B, N〉 : ∃X.A
(∃I)

Γ ` M : A1 ∧ A2

Γ ` Mπ1 : A1
(∧E1)

Γ ` M : A1 ∧ A2

Γ ` Mπ2 : A2
(∧E2)

Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1, Γ2 ` M [Xx.N] : C
(∃E)

The ordinary capture-avoiding substitution for types is denoted by
A[X := B]. In the rule (∃E), the variable X must not occur in Γ2 nor
C freely. We write Γ `λ¬∧∃ M : A to denote that Γ ` M : A is derivable
by the typing rules above.

In Section 6, we will show that this system is useful for a target of CPS
translations. In addition, λ¬∧∃ represents every function representable in the
polymorphic typed lambda calculus, because there exists a CPS-translation
from the polymorphic typed lambda calculus to this calculus.

6

3 Type Checking and Typability

In this section, we introduce some decision problems on typability of terms,
and state our main theorems.

Type checking (TC) asks, for given Γ, M , and A, whether Γ ` M : A is
derivable. Typability (TP) asks, for given M , whether there exist a context Γ
and a type A such that Γ ` M : A is derivable.

Type inhabitation (INH) is another problem, which asks, for given A, whether
there exists a term M such that ` M : A is derivable. The problem INH
corresponds to provability of the formula A. In [20], Tatsuta et al. proved
decidability of INH in λ¬∧∃, which immediately implies decidability of INH in
DF-λ¬∧∃.

In [1,4], undecidability of TC in DF-F is proved.

Theorem 3 ([1,4]) Type checking is undecidable in DF-F .

They also have proved undecidability of strong typability and type synthesis
in DF-F . Strong typability is a generalization of TP, and it asks, for given
M and Γ, whether there exist an extension Γ′ of Γ and a type A such that
Γ′ ` M : A is derivable. Type synthesis asks, for given M and Γ, whether
there exists a type A such that Γ ` M : A is derivable. The undecidability
of TP in DF-F is stronger than the undecidability of the strong typability in
DF-F , and their approach does not seem to apply to the undecidability of TP.

Theorem 4 Typability is undecidable in DF-F .

Undecidability of TC and TP in DF-λ¬∧∃ is proved by showing that these
problems in DF-F can be reduced to those in DF-λ¬∧∃.

Theorem 5 Type checking and typability are undecidable in DF-λ¬∧∃.

Theorem 4 will be proved in Section 4, and Theorem 5 will be proved in
Section 5.

4 Undecidability of TP in DF-F

This section proves Theorem 4. It is proved by a reduction from TC to TP in
DF-F . In order to obtain the reduction, we use a technique inspired by [23].

Lemma 6 For any →∀-type A and any closed DF-F -term M , we can effec-

7

tively construct a closed DF-F -term J such that `DF-F M : A is derivable if
and only if, for some →∀-type B, `DF-F J : B is derivable.

PROOF. Let x and y be fresh variables and take J as
λx.(λy.x(A→⊥)M)(x(⊥→⊥)x). It is easily proved that if ` M : A is
derivable then J is typable, so we will prove the converse direction.

First, we define three partial functions on types: lvar, ldep, and lbdep. The
function lvar(A) is the leftmost-variable occurrence of A when it is free in A,
and lvar(A) is undefined otherwise. We define lvar by

lvar(X) ≡ X,

lvar(A→B) ≡ lvar(A),

lvar(∀X.A) ≡ undefined (if lvar(A) ≡ X),

lvar(∀X.A) ≡ lvar(A) (otherwise).

The left depth ldep(A) is the depth from the root to the leftmost-variable
occurrence in the abstract syntax tree of A, and it is defined by

ldep(X) = 0,

ldep(A→B) = ldep(A) + 1,

ldep(∀X.A) = ldep(A) + 1.

The leftmost-bound-variable depth lbdep(A) is ldep(B) when A contains the
subexpression ∀X.B and the leftmost variable of A is bound by this quantifier.
We define lbdep by

lbdep(X) = undefined,

lbdep(A→B) = lbdep(A),

lbdep(∀X.A) = ldep(A) (if lvar(A) ≡ X),

lbdep(∀X.A) = lbdep(A) (otherwise).

Then we have the following lemmas: (1) ldep(A[X := B]) 6= ldep(A) implies
lvar(A) ≡ X, (2) lvar(A) ≡ X implies lbdep(A[X := B]) = lbdep(B) and
lvar(A[X := B]) ≡ lvar(B). These are proved by induction on A straightfor-
wardly.

Now suppose that we have a derivation D of ` J : B for some B. By analyzing
the form of J , the derivation D must be

.... D1

x : C, y : B2 ` x(A → ⊥)M : B1

x : C ` λy.x(A → ⊥)M : B2 → B1

.... D2

x : C ` x(⊥ → ⊥)x : B2

x : C ` (λy.x(A → ⊥)M)(x(⊥ → ⊥)x) : B1

` J : B

8

for some types B1, B2, and C such that B ≡ C→B1.

We will show that C must be ⊥. Since x(⊥→⊥)x is typable, we have
C ≡ ∀X.C1 and C1[X := ⊥→⊥] ≡ C→B2 for some C1. Then, ldep(C1[X :=
⊥→⊥]) is equal to ldep((∀X.C1)→B2) = ldep(C1) + 2, which is not equal
to ldep(C1), so we have lvar(C1) ≡ X by the lemma (1). By the lemma
(2), we have lbdep(C1[X := ⊥→⊥]) = lbdep(⊥→⊥) = 0, so we have
lbdep(C→B2) = 0. By definition, we have lbdep(C→B2) = ldep(C1) since
lvar(C1) ≡ X holds. Therefore, ldep(C1) = 0 holds, which means that C1 is a
variable, and it must be X since lvar(C1) ≡ X.

Hence we have C ≡ ⊥, and then D1 must be

x : ⊥, y : B2 ` x : ⊥
x : ⊥, y : B2 ` x(A → ⊥) : A → ⊥

....
` M : A

x : ⊥, y : B2 ` x(A → ⊥)M : B1

so ` M : A is derivable. 2

Proposition 7 Type checking can be reduced to typability in DF-F .

PROOF. A judgment x1 : A1, · · · , xn : An ` M : A is derivable if and only
if ` λx1. · · ·λxn.M : A1→· · ·→An→A is derivable, which can be reduced to
a typability problem for some J by Lemma 6. 2

PROOF. (Proof of Theorem 4) It immediately follows from Theorem 3 and
Proposition 7. 2

5 Undecidability of TC and TP in DF-λ¬∧∃

This section is devoted to the proof of Theorem 5. The subsection 5.1 will de-
fine a CPS translation from DF-F to DF-λ¬∧∃. We will also define an inverse
CPS translation from the image DF-λ¬∧∃

cps of the CPS translation to DF-F .
The subsection 5.2 will show the main lemma, which directly implies that
DF-λ¬∧∃ is conservative over DF-λ¬∧∃

cps . The subsection 5.3 will finish our unde-
cidability proof. Our method will be applied to a variant DF-λ¬∧∃

g with general
elimination rules in the subsection 5.4.

9

5.1 CPS Translation

We give a CPS translation for DF-F in this subsection. Our translation is
inspired by Fujita’s translation in [5], but we cannot use it directly for the
undecidability proof in domain-free calculi, since his calculus is in Church
style. In the following, we modify the translation appropriately.

Definition 8 (CPS Translation) (1) The negative translation from →∀-
types to ¬ ∧ ∃-types is defined by

X• ≡ X,

(A→B)• ≡ ¬A• ∧ B•,

(∀X.A)• ≡ ∃X.A•.

For a context Γ, we define Γ• as {(x : A•)|(x : A) ∈ Γ}.
(2) The CPS translation from terms of DF-F to terms of DF-λ¬∧∃ is defined

by

[[x]] ≡ λk.xk,

[[λx.M]] ≡ λk.(λx.[[M]](kπ2))(kπ1),

[[λX.M]] ≡ λk.k[Xk′.[[M]]k′],

[[MN]] ≡ λk.[[M]]〈[[N]], k〉,
[[MA]] ≡ λk.[[M]]〈A•, k〉,

where variables k and k′ are supposed to be fresh.

Note that this CPS translation preserves the β-reduction relation, and does
not preserve the η-reduction.

Proposition 9 If Γ `DF-F M : A holds, then we have ¬Γ• `λ¬∧∃ [[M]] : ¬A•.

Definition 10 (DF-λ¬∧∃
cps) (1) The continuation types (denoted by A, B,. . .)

are defined by

A ::= X | ¬A ∧ A | ∃X.A,

and the CPS types are defined as types in the form ¬A.
The set of CPS terms (denoted by P , Q,. . .), which is a subset of

DF-λ¬∧∃-terms, is inductively defined as follows: if x is a variable, P and
Q are CPS terms, A is a continuation type, X is a type variable, and k and
k′ are fresh variables, then λk.xk, λk.(λx.P (kπ2))(kπ1), λk.k[Xk′.Pk′],
λk.P 〈P, k〉, and λk.P 〈A, k〉 are CPS terms.

(2) We define the subsystem DF-λ¬∧∃
cps of DF-λ¬∧∃ by restricting terms and

types to CPS terms and CPS types, respectively. Judgments of DF-λ¬∧∃
cps

10

are in the form of ¬Γ ` P : ¬A for a CPS term P , a CPS type ¬A, and
a context ¬Γ every element of which is in the form of (x : ¬B) for a CPS
type ¬B. The typing rules of DF-λ¬∧∃

cps are the following.

¬Γ, x : ¬A ` λk.xk : ¬A

¬Γ, x : ¬A ` P : ¬B
¬Γ ` λk.(λx.P (kπ2))(kπ1) : ¬(¬A ∧ B)

¬Γ1 ` P : ¬(¬A ∧ B) ¬Γ2 ` Q : ¬A
¬Γ1,¬Γ2 ` λk.P 〈Q, k〉 : ¬B

¬Γ ` P : ¬(∃X.B)

¬Γ ` λk.P 〈A, k〉 : ¬B[X := A]

¬Γ ` P : ¬B
¬Γ ` λk.k[Xk′.Pk′] : ¬∃X.B (X 6∈ FV (Γ))

We write ¬Γ `cps P : ¬A to denote that the judgment is derivable in
DF-λ¬∧∃

cps .

Lemma 11 (1) The set of the continuation types coincides with the image
of the negative translation.

(2) The set of the CPS terms coincides with the image of the CPS translation.

PROOF. (1) It is proved by the induction on the continuation types that any
continuation type is in the image of the negative translation. It is proved by
the induction on the →∀-types that A• is a continuation type for any →∀-type
A.

(2) It is proved by the induction on the CPS terms that any CPS term is in the
image of the CPS translation. It is proved by the induction on the DF-F -terms
that [[M]] is a CPS term for any DF-F -term M . 2

Definition 12 (Inverse CPS Translation) The inverse translation (·)◦
from continuation types to →∀-types is defined by

X◦ ≡ X,

(¬A ∧ B)◦ ≡ A◦→B◦,

(∃X.A)◦ ≡ ∀X.A◦.

For a context Γ every element of which is in the form of (x : A) for some
continuation type A, we define Γ◦ as {(x : A◦)|(x : A) ∈ Γ}.

11

The inverse translation (·)# from CPS terms to terms of DF-F is defined by

(λk.xk)# ≡ x,

(λk.(λx.P (kπ2))(kπ1))
≡ λx.P#,

(λk.k[Xk′.Pk′])
≡ λX.P#,

(λk.P 〈Q, k〉)# ≡ P#Q#,

(λk.P 〈A, k〉)# ≡ P#A◦.

Lemma 13 (1) For any →∀-type A, we have A•◦ ≡ A.
(2) For any DF-F -term M , we have [[M]]# ≡ M .

Proposition 14 (1) If ¬Γ `cps P : ¬A holds, then Γ◦ `DF-F P# : A◦ holds.
(2) If ¬Γ• `cps [[M]] : ¬A• holds, then Γ `DF-F M : A holds.

PROOF. (1) By induction on the derivation.

(2) By (1), we have Γ•◦ `DF-F [[M]]# : A•◦. By Lemma 13, we have the claim.
2

5.2 Typing for CPS Terms in DF-λ¬∧∃

Proposition 9 shows that, for any typable term M in DF-F , its CPS translation
[[M]] has a CPS type. In fact, the converse can be also proved. In order to
prove that, in this subsection, we will show that DF-λ¬∧∃ is conservative over
DF-λ¬∧∃

cps .

A type derivation of a CPS term in DF-λ¬∧∃ may contain a type which
is not in DF-λ¬∧∃

cps even if its conclusion is in DF-λ¬∧∃
cps . For example,

let P be λk.P1〈P2, k〉, where P1 ≡ λl.(λy.(λl′.zl′)(lπ2))(lπ1) and P2 ≡
λk.(λx.(λk′.xk′)(kπ2))(kπ1). Then both z : ¬B ` P1 : ¬(¬(¬A ∧ A) ∧ B) and
` P2 : ¬(¬A∧A) are derivable in DF-λ¬∧∃ for any type A and any continuation
type B. Therefore the following is a derivation in DF-λ¬∧∃.

....
z : ¬B ` P1 : ¬(¬(¬A ∧ A) ∧ B)

....
` P2 : ¬(¬A ∧ A) k : B ` k : B
k : B ` 〈P2, k〉 : ¬(¬A ∧ A) ∧ B

z : ¬B, k : B ` P1〈P2, k〉 : ⊥
z : ¬B ` P : ¬B

The conclusion z : ¬B ` P : ¬B is a judgment of DF-λ¬∧∃
cps since P is a CPS

term and ¬B is a CPS type, but the derivation is not in DF-λ¬∧∃
cps when A is

not a continuation type. However, as we can see in the example, such a type A

12

can be replaced by arbitrary type without changing the form of the derivation.
In the case of the example, if we replace A in the derivation by a continuation
type, we can obtain a derivation in DF-λ¬∧∃

cps of the same conclusion.

In general, we can define a translation (·)c from ¬ ∧ ∃-types to CPS types such
that, for any CPS term P and any type derivation of Γ `λ¬∧∃ P : A, we have
Γc `cps P : Ac. We call the translation (·)c the contraction translation. More-
over, we have (¬A•)c ≡ ¬A•, so the property of the contraction translation
implies that DF-λ¬∧∃ is conservative over DF-λ¬∧∃

cps .

Definition 15 (Contraction Translation) Let S be a fixed closed contin-
uation type, such as ∃X.X. The contraction translation (·)c from ¬ ∧ ∃-types
to CPS types is mutually defined with the auxiliary translation (·)d from
¬ ∧ ∃-types to continuation types by

(¬A)c ≡ ¬Ad,

Ac ≡ ¬S (A is not a negation),

Xd ≡ X,

⊥d ≡ S,

(¬A)d ≡ S,

(A ∧ B)d ≡ Ac ∧ Bd,

(∃X.A)d ≡ ∃X.Ad.

For a context Γ, we define Γc as {(x : Ac)|(x : A) ∈ Γ}.

Lemma 16 (1) For any continuation type A, we have (¬A)c ≡ ¬A and
Ad ≡ A.

(2) For any continuation type A and any ¬ ∧ ∃-type B, we have
(B[X := A])c ≡ Bc[X := A] and (B[X := A])d ≡ Bd[X := A].

PROOF. (1) By induction on A.

(2) By induction on B. Note that any continuation type A is not a negation,
so we have Ac ≡ ¬S. 2

Lemma 17 (Main Lemma) If P is a CPS term, then Γ `λ¬∧∃ P : A implies
Γc `cps P : Ac.

PROOF. By induction on P . Note that any type of P is a negation, since
any CPS term is a λ-abstraction. So we will show that Γ `λ¬∧∃ P : ¬A implies
Γc `cps P : ¬Ad.

13

Case P ≡ λk.xk. Any derivation of Γ `λ¬∧∃ P : ¬A has the following form.

Γ ` x : ¬A k : A ` k : A
Γ, k : A ` xk : ⊥
Γ ` λk.xk : ¬A

Since (x : ¬A) ∈ Γ holds, we have (x : ¬Ad) ∈ Γc, so Γc ` P : ¬Ad is derivable.

Case P ≡ λk.(λx.Q(kπ2))(kπ1). Any derivation of Γ `λ¬∧∃ P : ¬A has the
following form, where A must be B ∧ C.

Γ, x : B ` Q : ¬C
Γ, k : A ` k : A

Γ, k : A ` kπ2 : C

Γ, k : A, x : B ` Q(kπ2) : ⊥
Γ, k : A ` λx.Q(kπ2) : ¬B

Γ, k : A ` k : A
Γ, k : A ` kπ1 : B

Γ, k : A ` (λx.Q(kπ2))(kπ1) : ⊥
Γ ` λk.(λx.Q(kπ2))(kπ1) : ¬A

By the induction hypothesis, we have Γc, x : Bc `cps Q : ¬Cd, so we have

Γc `cps P : ¬(Bc ∧ Cd), where Ad ≡ (B ∧ C)d ≡ Bc ∧ Cd.

Case P ≡ λk.Q〈R, k〉. Any derivation of Γ `λ¬∧∃ P : ¬A has the following
form.

Γ ` Q : ¬(B ∧ A)
Γ ` R : B k : A ` k : A
Γ, k : A ` 〈R, k〉 : B ∧ A

Γ, k : A ` Q〈R, k〉 : ⊥
Γ ` λk.Q〈R, k〉 : ¬A

By the induction hypotheses, we have Γc `cps Q : ¬(Bc∧Ad) and Γc `cps R : Bc,
so we have Γc `cps P : ¬Ad.

Case P ≡ λk.k[Xk′.Qk′]. Any derivation of Γ `λ¬∧∃ P : ¬A has the following
form, where A must be ∃X.B, and Γ must not contain a free type variable X.

k : A ` k : A

Γ ` Q : ¬B k′ : B ` k′ : B

Γ, k′ : B ` Qk′ : ⊥
Γ, k : A ` k[Xk′.Qk′] : ⊥
Γ ` λk.k[Xk′.Qk′] : ¬A

By the induction hypothesis, we have Γc `cps Q : ¬Bd. Since Γc does not

contain X freely, we have Γc `cps P : ¬∃X.Bd, where ∃X.Bd ≡ (∃X.B)d.

Case P ≡ λk.Q〈B, k〉. Any derivation of Γ `λ¬∧∃ P : ¬A has the following

14

form, where A must be C[X := B].

Γ ` Q : ¬∃X.C
k : A ` k : A

k : A ` 〈B, k〉 : ∃X.C

Γ, k : A ` Q〈B, k〉 : ⊥
Γ ` λk.Q〈B, k〉 : ¬A

By the induction hypothesis, Γc `cps Q : ¬∃X.Cd holds, so we have Γc `cps

P : ¬Cd[X := B] by letting k : Cd[X := B], where Cd[X := B] is identical to
(C[X := B])d by Lemma 16 (2). 2

5.3 Proof of Undecidability

By the main lemma, we can reduce TC and TP of DF-F to those of DF-λ¬∧∃,
and then conclude undecidability of TC and TP in DF-λ¬∧∃.

Proposition 18 (1) We have Γ `DF-F M : A if and only if we have
¬Γ• `λ¬∧∃ [[M]] : ¬A•.

(2) Let M be a DF-F -term. We have Γ `DF-F M : A for some Γ and A if
and only if we have Γ′ `λ¬∧∃ [[M]] : A′ for some Γ′ and A′.

PROOF. (1) The only-if part is Proposition 9, so we will show the if part. If
¬Γ• `λ¬∧∃ [[M]] : ¬A• holds, by Lemma 17, we have (¬Γ•)c `cps [[M]] : (¬A•)c,
from which ¬Γ• `cps [[M]] : ¬A• follows by Lemma 16 (1). By Proposition 14
(2), we have Γ `DF-F M : A.

(2) The only-if part follows from the only-if part of (1). The if part follows
from Lemma 17 and Proposition 14 (2). 2

PROOF. (Proof of Theorem 5) Undecidability of TC and TP in DF-λ¬∧∃

follows from Theorems 3 and 4 and Proposition 18. 2

5.4 Undecidability of TC and TP in DF-λ¬∧∃
g

We consider another variant of ∧-elimination rules called general elimination
rules, which are introduced to study the relationship between natural deduc-
tions and sequent calculi [22,13]. The discussion for DF-λ¬∧∃ in the previous
subsections can be applied to a variant DF-λ¬∧∃

g with the general elimination
rules by defining a suitable CPS translation from DF-F to DF-λ¬∧∃

g .

15

Definition 19 (DF-λ¬∧∃
g) The terms of DF-λ¬∧∃

g are defined by

M ::= x | λx.M | 〈M, M〉 | 〈A,M〉 | MM | M [xx.M] | M [Xx.M].

The typing rules of DF-λ¬∧∃
g are the same as DF-λ¬∧∃ except for replacing

(∧E1) and (∧E2) by the following rule.

Γ1 ` M : A ∧ B Γ2, x : A, y : B ` N : C

Γ1, Γ2 ` M [xy.N] : C
(∧E)

We write Γ `λ¬∧∃
g

M : A to denote that Γ ` M : A is derivable in DF-λ¬∧∃
g .

Definition 20 The definition of CPS terms are the same as that for DF-λ¬∧∃
cps

except λk.k[xk′.Pk′] is a CPS term instead of λk.(λx.P (kπ2))(kπ1).

The CPS translation [[·]] of DF-λ¬∧∃
g and its inverse (·)# are the same as those of

DF-λ¬∧∃ except for the cases of λ-abstractions. These are defined by [[λx.M]] ≡
λk.k[xk′.[[M]]k′], and (λk.k[xk′.Pk′])# ≡ λx.P#. We write ¬Γ `g-cps P : ¬A
to denote that the judgment is derivable in the image of the CPS translation,
which is defined similarly to DF-λ¬∧∃.

Lemma 21 If P is a CPS term, Γ `λ¬∧∃
g

P : A implies Γc `g-cps P : Ac.

Proposition 22 (1) We have Γ `DF-F M : A if and only if we have
¬Γ• `λ¬∧∃

g
[[M]] : ¬A•.

(2) Let M be a DF-F -term. We have Γ `DF-F M : A for some Γ and A if
and only if we have Γ′ `λ¬∧∃

g
[[M]] : A′ for some Γ′ and A′.

Theorem 23 Type checking and typability are undecidable in DF-λ¬∧∃
g .

PROOF. It follows from Theorems 3 and 4 and Proposition 22. 2

6 DF-λ¬∧∃ as Target of CPS Translations

In this section, we discuss that DF-λ¬∧∃ is suitable as a target calculus of CPS
translations by showing it works well as a CPS target for the call-by-value
computational lambda calculus, the call-by-value lambda-mu calculus, and
delimited continuations. At first sight, λ¬∧∃ may look weak as a computational
system, but it suffices as a target calculus of several CPS translations [5,9].
Moreover, the domain-free style calculus with existence works also as a CPS
target of the domain-free call-by-value lambda-mu calculus λV µ [3].

First, we define the reduction relation in DF-λ¬∧∃. We omit η-rules, but the
results in this section can be extended straightforwardly to η-rules.

16

Definition 24 The reduction rules of DF-λ¬∧∃ are the following:

(β→) (λx.M)N → M [x := N],
(β∧) 〈M1,M2〉πi → Mi (i = 1 or 2),
(β∃) 〈A,M〉[Xx.N] → N [X := A, x := M].

The relation →λ¬∧∃ is the compatible closure of the above rules, and the rela-
tion →∗

λ¬∧∃ is its reflexive transitive closure.

6.1 Computational Lambda Calculus

In [18], Sabry and Wadler gave a call-by-value CPS translation from the com-
putational lambda calculus λc [12] to a CPS calculus λcps, which is a subsystem
of the ordinary lambda calculus. Furthermore, they gave an inverse translation
from λcps to λc, and showed that those translations form a reflection of λcps in
λc.

The system DF-λ¬∧∃ can be a target of a CPS translation for λc with polymor-
phic types. In this subsection, we define DF-λ¬∧∃

cps/v as a subsystem of DF-λ¬∧∃,

and show that we have a reflection of DF-λ¬∧∃
cps/v in λc with polymorphic types.

Definition 25 (DF-λ∀
c) The system DF-λ∀

c is an extension of DF-F by adding
let-expressions with the typing rule for them as follows.

Γ1 ` M : A Γ2, x : A ` N : B

Γ1, Γ2 ` let x = M in N : B
(let)

The values are defined by V ::= x | λx.M | λX.M . We use P , Q,. . . to de-
note terms that are not values. The call-by-value reduction is defined by the
following rules:

(β.v) (λx.M)V → M [x := V],
(β.t) (λX.M)A → M [X := A],
(β.let) let x = V in M → M [x := V],
(ass) let y = (let x = L in M) in N → let x = L in (let y = M in N),
(let.1) PM → let x = P in xM ,
(let.2) V P → let x = P in V x,
(let.3) PA → let x = P in xA.

In (ass), N must not contain x freely.

Definition 26 (DF-λ¬∧∃
cps/v) (1) Let k be a fixed term variable. The value

types (denoted by A, B,. . .) are defined by

A ::= X | ¬(A ∧ ¬A) | ¬∃X.¬A.

17

The terms (denoted by M , N ,. . .), the values (denoted by V , W ,. . .),
and the continuations (denoted by K,. . .) of DF-λ¬∧∃

cps/v are mutually de-
fined as follows. If V is a value, K is a continuation, and A is a value
type, then KV , V 〈V,K〉, and V 〈A, K〉 are terms. If x is a variable,
X is a type variable, c is a fresh variable, and M is a term, then x,
λc.(λx.(λk.M)(cπ2))(cπ1), and λc.c[Xk.M] are values. If x is a variable
and M is a term, then k and λx.M are continuations.

(2) The reduction rules of DF-λ¬∧∃
cps/v are the following.

(β.v) (λ〈x, k〉.M)〈V, K〉 → M [x := V, k := K],
(β.t) (λ〈X, k〉.M)〈A, K〉 → M [x := A, k := K],
(β.let) (λx.M)V → M [x := V].

Note that DF-λ¬∧∃
cps/v is a subsystem of DF-λ¬∧∃, and closed under the reduction.

The first-order fragment of DF-λ¬∧∃
cps/v is isomorphic to λcps in [18].

Definition 27 (1) The negative translation (·)4 from →∀-types to value
types and its inverse (·)5 are defined by

X4 ≡ X, X5 ≡ X,

(A→B)4 ≡ ¬(A4 ∧ ¬B4), (¬(A ∧ ¬B))5 ≡ A5→B5,

(∀X.A)4 ≡ ¬∃X.¬A4, (¬∃X.¬A)5 ≡ ∀X.A5.

(2) For a DF-λ∀
c -term M , the CPS translation [[M]] is mutually defined with

the auxiliary translations M • K and Φ(V) as follows:

[[M]] ≡ M • k,

V • K ≡ KΦ(V),

V W • K ≡ Φ(V)〈Φ(W), K〉,
PW • K ≡ P • λm.m〈Φ(W), K〉,
V Q • K ≡ Q • λn.Φ(V)〈n,K〉,
PQ • K ≡ P • λm.(Q : λn.m〈n, K〉),
V A • K ≡ Φ(V)〈A4, K〉,
PA • K ≡ P • λm.m〈A4, K〉,

(let x = M in N) • K ≡ M • λx.(N : K),

Φ(x) ≡ x,

Φ(λx.M) ≡ λ〈x, k〉.[[M]],

Φ(λX.M) ≡ λ〈X, k〉.[[M]],

where m and n are fresh variables.

18

(3) The inverse translation (·)# from DF-λ¬∧∃
cps/v to DF-λ∀

c is defined by

(KV)# ≡ K[[V \], x\ ≡ x,

(V 〈W,K〉)# ≡ K[[V \W \], (λ〈x, k〉.M)\ ≡ λx.M#,

(V 〈A, K〉)# ≡ K[[A5W \], (λ〈X, k〉.M)\ ≡ λX.M#,

k[≡ [],

(λx.M)[≡ let x = [] in M#.

Note that the translation M • K is based on the same idea with Plotkin’s
colon translation [16], but we use another notation M • K to avoid confusion
with the typing relation M : A.

Proposition 28 (1) If Γ `λ∀
c

M : A holds, then we have Γ4, k : ¬A4 `λ¬∧∃

[[M]] : ⊥.
(2) The translations [[·]] and (·)# form a reflection of DF-λ¬∧∃

cps/v in DF-λ∀
c , that

is, the following hold.
(a) The translations [[·]] and (·)# preserve reduction relation →∗.
(b) We have [[M#]] ≡ M for any term M of DF-λ¬∧∃

cps/v.

(c) We have M →∗ [[M]]# for any term M of DF-λ∀
c .

PROOF. The claims can be proved straightforwardly. 2

6.2 Call-by-Value Lambda-Mu Calculus

The lambda-mu calculus was introduced by Parigot in [15] as an extension
of lambda calculus, and it corresponds to the classical natural deduction for
second-order propositional logic by the Curry-Howard isomorphism. In [3],
Fujita pointed out that the Curry-style call-by-value lambda-mu calculus does
not enjoy the subject reduction property, so he introduced a domain-free call-
by-value lambda-mu calculus λV µ to avoid the problem. In this subsection, we
show that DF-λ¬∧∃ works as a target calculus of a CPS translation for λV µ.

Definition 29 (λV µ) (1) The system λV µ contains µ-variables (denoted by
α, β,. . .), which are another kind of variables. The types of λV µ are the
→∀-types. The terms (denoted by M , N ,. . .), and the values (denoted
by V , W ,. . .) of λV µ are defined by

M ::= V | (MM) | (MA) | (µα.[α]M),

V ::= x | (λx.M) | (λX.M).

Outermost parentheses are often omitted.

19

(2) The typing rules of λV µ are the following.

Γ, x : A ` x : A; ∆
(Ax)

Γ ` M : B; ∆

Γ ` µα.[β]M : A; (∆, β : B) − {α : A} (µ)

Γ, x : A ` M : B; ∆

Γ ` λx.M : A→B; ∆
(→I)

Γ1 ` M : A→B; ∆1 Γ2 ` N : A; ∆2

Γ1, Γ2 ` MN : B; ∆1, ∆2
(→E)

Γ ` M : A; ∆

Γ ` λX.M : ∀X.A; ∆
(∀I)

Γ ` M : ∀X.A; ∆

Γ ` MB : A[X := B]; ∆
(∀E)

We use Γ to denote a context similarly to DF-λ¬∧∃, and ∆ to denote a
µ-context, which is a finite set of type assignments for µ-variables in the
form of (α : A). In the rule (∀I), the lower sequent must not contain X
freely.

(3) The singular contexts are defined by C ::= []M | V [] | []A. The term
C[M] is obtained from C by replacing [] by M . The structural substi-
tution M [α⇐C] is obtained from M by replacing each subterm [α]L by
[α]C[L[α⇐C]]. The reduction rules of λV µ are the following:

(βtm) (λx.M)N → M [x := N],
(βtp) (λX.M)A → M [X := A],
(µ) C[µα.M] → µα.M [α⇐C].

Definition 30 We suppose that DF-λ¬∧∃ contains a term variable xα for each
µ-variable α. The negative translation (·)4 and the CPS translation [[·]] from
λV µ to DF-λ¬∧∃ are the same as Definition 27, except for replacing the defi-
nition for let-expression by (µα.[β]M) • K ≡ (M • xβ)[xα := K].

Proposition 31 (1) If Γ `λV µ M : A; ∆ holds, then we have Γ4,¬∆4, k :
¬A4 `λ¬∧∃ [[M]] : ⊥.

(2) If M →∗
λV µ N holds, then we have [[M]] →∗

λ¬∧∃ [[N]].

6.3 Delimited Continuations

The ¬ ∧ ∃-fragments are also important as a target of a CPS translation for
delimited continuations such as shift and reset [2]. For calculi with delimited
continuations, we consider multi-staged CPS translations, and we need call-
by-value calculi as intermediate CPS calculi. However, in order to have a sound
CPS translation to an →∃-fragment, the calculus has to have not only the call-
by-value η-reduction, but also the full η-reduction. On the other hand, as it
was shown in [10], we can define a sound CPS translation from a calculus with
shift and reset to a call-by-value ¬ ∧ ∃-fragment without full η-reduction.

20

7 Undecidability in Implicational Fragment

Our method by means of CPS translations can be used for the domain-free
typed lambda calculus DF-λ→∃ with implication and existence. In this section,
we define DF-λ→∃ and prove undecidability of TC and TP in DF-λ→∃, which
is another main result of this paper. In order to prove that, we give a CPS
translation from DF-F to DF-λ→∃, by which TC and TP of DF-F are reduced
to those of DF-λ→∃.

Definition 32 (DF-λ→∃) The language of DF-λ→∃ contains type variables
(denoted by X, Y ,. . .), a type constant ⊥, and term variables (denoted by x,
y,. . .). The types (called →∃-types) and the terms of DF-λ→∃ are defined by

A ::= X | ⊥ | (A→A) | (∃X.A),

M ::= x | (λx.M) | 〈A,M〉 | (MM) | (M [Xx.M]).

Outermost parentheses are often omitted. In DF-λ→∃, the type A→⊥ is de-
noted by ¬A. The typing rules of DF-λ→∃ are (Ax), (∃I), (∃E) of DF-λ¬∧∃

and

Γ, x : A ` M : B
Γ ` λx.M : A→B

(→I)
,

Γ1 ` M : A→B Γ2 ` N : A
Γ1, Γ2 ` MN : B

(→E)
.

Note that ⊥ can be considered as a distinguished type variable which is not
supposed to be bound by the existential quantifiers, that is, the underlying
logic of DF-λ→∃ is the minimal logic with logical connectives → and ∃.

Definition 33 (CPS translation) (1) The continuation types are defined
by

A ::= X | ¬(¬A→¬A) | ∃X.A.

The negative translation (·)• from →∀-types to →∃-types and its in-
verse (·)◦ from continuation types to →∀-types are defined by

X• ≡ X, X◦ ≡ X,

(A→B)• ≡ ¬(¬A•→¬B•), (¬(¬A→¬B))◦ ≡ A◦→B◦,

(∀X.A)• ≡ ∃X.A•, (∃X.A)◦ ≡ ∀X.A◦.

The CPS types are defined as types in the form of ¬A for a continuation
type A.

(2) The CPS terms are inductively defined as follows: if x is a variable, P
and Q are CPS terms, A is a continuation type, X is a type variable, and
k, k′, and m are fresh variables, then λk.xk, λk.k(λx.P), λk.k[Xk′.Pk′],
λk.P (λm.mPk), and λk.P 〈A, k〉 are CPS terms.

21

The CPS translation [[·]] from terms of DF-F to terms of DF-λ→∃ and
its inverse (·)# from CPS terms to terms of DF-F are defined by

[[x]] ≡ λk.xk, (λk.xk)# ≡ x,

[[λx.M]] ≡ λk.k(λx.[[M]]), (λk.k(λx.P))# ≡ λx.P#,

[[λX.M]] ≡ λk.k[Xk′.[[M]]k′], (λk.k[Xk′.Pk′])
≡ λX.P#,

[[MN]] ≡ λk.[[M]](λm.m[[N]]k), (λk.P (λm.mQk))# ≡ P#Q#,

[[MA]] ≡ λk.[[M]]〈A•, k〉, (λk.P 〈A, k〉)# ≡ P#A◦.

(3) The system DF-λ→∃
cps is defined as a subsystem of DF-λ→∃ by restricting

terms and types to CPS terms and CPS types, respectively. The typing
rules of DF-λ→∃

cps are the following.

¬Γ, x : ¬A ` λk.xk : ¬A

¬Γ, x : ¬A ` P : ¬B
¬Γ ` λk.k(λx.P) : ¬¬(¬A → ¬B)

¬Γ1 ` P : ¬¬(¬A → ¬B) ¬Γ2 ` Q : ¬A
¬Γ1,¬Γ2 ` λk.P (λm.mQk) : ¬B

¬Γ ` P : ¬∃X.B
¬Γ ` λk.P 〈A, k〉 : ¬B[X := A]

¬Γ ` P : ¬B
¬Γ ` λk.k[Xk′.Pk′] : ¬∃X.B (X 6∈ FV (Γ))

We write ¬Γ `→∃cps P : ¬A to denote that the judgment is derivable in
DF-λ→∃

cps .

Lemmas 34 and 35 show that the translations (·)◦ and (·)# are actually the
inverses of (·)• and [[·]] respectively.

Lemma 34 (1) The set of the continuation types coincides with the image
of the negative translation.

(2) The set of the CPS terms coincides with the image of the CPS translation.

PROOF. They are proved in a way similar to Lemma 11. 2

Lemma 35 (1) For any →∀-type A, we have A•◦ ≡ A.
(2) For any DF-F -term M , we have [[M]]# ≡ M .

Proposition 36 (1) If Γ `DF-F M : A holds, then we have ¬Γ• `λ→∃ [[M]] :
¬A•.

22

(2) If ¬Γ `→∃cps P : ¬A holds, then we have Γ◦ `DF-F P# : A◦.
(3) If ¬Γ• `→∃cps [[M]] : ¬A• holds, then we have Γ `DF-F M : A.

Definition 37 (Contraction Translation) Let S be a fixed closed contin-
uation type, such as ∃X.X. The contraction translation (·)c from →∃-types
to CPS types is mutually defined with the auxiliary translation (·)d from →∃-
types to continuation types by

(A→B)c ≡ ¬Ad,

Ac ≡ ¬S (A is not an implication),

Xd ≡ X,

⊥d ≡ S,

((A→B→C)→D)d ≡ ¬(Ac→¬Bd),

((A→B)→D)d ≡ ¬(Ac→¬S) (B is neither an implication nor ⊥),

(A→D)d ≡ S (otherwise),

(∃X.A)d ≡ ∃X.Ad.

Lemma 38 (1) For any continuation type A, we have (¬A)c ≡ ¬A and
Ad ≡ A.

(2) For any continuation type A and any →∃-type B, we have (B[X := A])c ≡
Bc[X := A] and (B[X := A])d ≡ Bd[X := A].

PROOF. (1) The claim is straightforwardly proved by induction on A.

(2) First, we show (a) Ac ≡ ¬S, and (b) (A → D)d ≡ S hold for any continu-
ation type A.

(a) If A is either a type variable or an existence, it is trivial, so we will
prove (¬(¬B→¬C))c ≡ ¬S. We have (¬(¬B→¬C))c ≡ ¬(¬B→¬C)d ≡
¬((B→⊥)→¬C)d, so it is identical to ¬S by the definition.

(b) Similarly, we will prove only the case A ≡ ¬(¬B→¬C). We have
(A→D)d ≡ (((¬B→¬C)→⊥)→D)d, so it is identical to S by the definition.

Then we show (B[X := A])c ≡ Bc[X := A] and (B[X := A])d ≡ Bd[X := A]
simultaneously by induction on B. In the following, we write B[A] for B[X :=
A].

We will show (B[A])c ≡ Bc[A] by induction on B. Cases are considered ac-
cording to B.

Case X. We have (X[A])c ≡ Ac, which is identical to ¬S by (a). On the other
hand, Xc[A] ≡ ¬S[A] ≡ ¬S holds.

23

Case Y (6≡ X), ⊥ or ∃Y.B. Both sides are identical to ¬S.

Case B→C. We have ((B→C)[A])c ≡ (B[A]→C[A])c ≡ ¬(B[A])d, which
is identical to ¬Bd[A] by the induction hypothesis. On the other hand,
(B→C)c[A] ≡ ¬Bd[A] holds.

Next, we will show (B[A])d ≡ Bd[A] by induction on B. Cases are considered
according to B.

Case X. Both sides are identical to A, since Ad ≡ A by (1).

Case Y (6≡ X). Both sides are identical to Y .

Case ⊥. Both sides are identical to S.

Case ∃Y.B. We have ((∃Y.B)[A])d ≡ (∃Y.B[A])d ≡ ∃Y.(B[A])d. By the induc-
tion hypothesis, it is identical to ∃Y.Bd[A] ≡ (∃Y.Bd)[A] ≡ (∃Y.B)d[A].

Case X→D. We have ((X→D)[A])d ≡ (A→D[A])d, which is identical to S by
(b). On the other hand, (X→D)d[A] ≡ S[A] ≡ S holds.

Case Y →D (Y 6≡ X), ⊥→D, or (∃Y.A)→D. Both sides are identical to S.

Case (A→X)→D. We have ((A→X)→D)d[A] ≡ (¬(Ac→¬S))[A] ≡
¬(Ac[A]→¬S), which is identical to ¬((A[A])c→¬S) by the induction hypoth-
esis. On the other hand, we have (((A→X)→D)[A])d ≡ ((A[A]→A)→D[A])d.
If A is either a type variable or an existential type, it is identical to
¬((A[A])c→¬S). Otherwise, A is in the form of ¬(¬B→¬C), so it is iden-
tical to ¬((A[A])c→¬(¬B→¬C)d), which is identical to ¬((A[A])c→¬S), since
(¬B→¬C)d ≡ S by the definition.

Case (A→Y)→D (Y 6≡ X) or (A→∃Y.B)→D. By the induction hypothesis,
both sides are identical to ¬(Ac[A]→¬S).

Case (A→⊥)→D. Both sides are identical to S.

Case (A→(B→C))→D. By the induction hypotheses, the both sides are iden-
tical to ¬(Ac[A]→¬Bd[A]). 2

Similarly to DF-λ¬∧∃, we have the following key lemma.

Lemma 39 If P is a CPS term, Γ `λ→∃ P : A implies Γc `→∃cps P : Ac.

PROOF. By induction on P . Note that any typable CPS term must have an
implicational type, so we will show that Γ `λ→∃ P : A1→A2 implies Γc `→∃cps

24

P : ¬Ad
1. We will show only non-trivial cases, and the other cases are proved

similarly to DF-λ¬∧∃.

Case P ≡ λk.k(λx.Q). Any derivation of Γ `λ→∃ P : A1→A2 has the following
form, where A1 must be (B1→B2)→A2.

k : A1 ` k : A1

Γ, x : B1 ` Q : B2

Γ ` λx.Q : B1→B2

Γ, k : A1 ` k(λx.Q) : A2

Γ ` λk.k(λx.Q) : A1→A2

Note that B2 is an implication since it is a type of a CPS term Q, so we
have Ad

1 ≡ ((B1→B2)→A2)
d ≡ ¬(Bc

1→Bc
2) by the definition. By the induction

hypothesis, we have Γc, x : Bc
1 `→∃cps Q : Bc

2, so Γc `→∃cps P : ¬¬(Bc
1→Bc

2)
holds.

Case P ≡ λk.Q(λm.mRk). Any derivation of Γ `λ→∃ P : A1→A2 has the
following form, where B denotes (C→A1→D)→D.

Γ ` Q : B→A2

m : C→A1→D ` m : C→A1→D Γ ` R : C
Γ,m : C→A1→D ` mR : A1→D k : A1 ` k : A1

Γ, k : A1,m : C→A1→D ` mRk : D

Γ, k : A1 ` λm.mRk : (C→A1→D)→D

Γ, k : A1 ` Q(λm.mRk) : A2

Γ ` λk.Q(λm.mRk) : A1→A2

By the induction hypotheses, we have Γc `→∃cps Q : ¬Bd and Γc `→∃cps R : Cc,
where Bd is identical to ¬(Cc→¬Ad

1). So we have Γc `→∃cps P : ¬Ad
1. 2

Proposition 40 (1) We have Γ `DF-F M : A if and only if we have
¬Γ• `λ→∃ [[M]] : ¬A•.

(2) Let M be a DF-F -term. We have Γ `DF-F M : A for some Γ and A if
and only if we have Γ′ `λ→∃ [[M]] : A′ for some Γ′ and A′.

Theorem 41 Type checking and typability are undecidable in DF-λ→∃.

PROOF. It follows from Theorems 3 and 4, and Proposition 40. 2

Acknowledgments The authors are grateful to Professor Ken-etsu Fujita
for his helpful comments, and Professor Masahito Hasegawa for a copy of
his draft [10]. They would also like to thank anonymous reviewers for their
comments to this paper and its preceding version [14]. The first author was
partially supported by the Japanese Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for Young Scientists (B) 18700008.

25

References

[1] G. Barthe and M.H. Sørensen, Domain-free pure type systems. J. Functional
Programming 10:412–452, 2000.

[2] O. Danvy and A. Filinski, Representing control: a study of the CPS translation.
Mathematical Structures in Computer Science 2(4):361–391, 1992.

[3] K. Fujita, Explicitly typed λµ-calculus for polymorphism and call-by-value.
In Proceedings of 4th International Conference on Typed Lambda Calculi and
Applications (TLCA 1999), LNCS 1581, pp. 162–177, 1999.

[4] K. Fujita, and A. Schubert, Partially typed terms between Church-style and
Curry-style. In International Conference IFIP TCS 2000, LNCS 1872, pp. 505–
520, 2000.

[5] K. Fujita, Galois embedding from polymorphic types into existential types.
In Proceedings of 7th International Conference on Typed Lambda Calculi and
Applications (TLCA 2005), LNCS 3461, pp. 194–208, 2005.

[6] K. Fujita and A. Schubert, Existential type systems with no types in terms.
In Proceedings of 9th International Conference on Typed Lambda Calculi and
Applications (TLCA 2009), LNCS 5608, pp. 112–126, 2009.

[7] J.Y. Girard, Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse de doctorat d’Etat, Université de Paris
VII, 1972.

[8] R. Harper and M. Lillibridge, Polymorphic type assignment and CPS conversion.
Lisp and Symbolic Computation, 6:361–380, 1993.

[9] M. Hasegawa, Relational parametricity and control. Logical Methods in
Computer Science, 2(3:3):1–22, 2006.

[10] M. Hasegawa, Unpublished manuscript, 2007.

[11] J.C. Mitchell and G.D. Plotkin, Abstract types have existential type. ACM
Transactions on Programming Languages and Systems 10(3):470–502, 1988.

[12] E. Moggi, Computational lambda-calculus and monads. In Proceedings of 4th
Annual Symposium on Logic in Computer Science (LICS 1989), pp. 14–23, 1989.

[13] K. Nakazawa, An isomorphism between cut-elimination procedure and proof
reduction. In Proceedings of 8th International Conference on Typed Lambda
Calculi and Applications (TLCA 2007), LNCS 4583, pp.336–350, 2007.

[14] K. Nakazawa, M. Tatsuta, Y. Kameyama, and H. Nakano, Undecidability of
type-checking in domain-free typed lambda-calculi with existence. In the 17th
EACSL Annual Conference on Computer Science Logic (CSL 2008), LNCS 5213,
pp. 477–491, 2008.

26

[15] M. Parigot, λµ-calculus: an algorithmic interpretation of classical natural
deduction. In Proc. the International Conference on Logic Programming and
Automated Reasoning, LNCS 624, pp.190–201, 1992.

[16] G. Plotkin, Call-by-name, call-by-value, and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

[17] J.C. Reynolds, Towards a theory of type structure. In Symposium on
Programming, LNCS 19, pp.408–425, 1974.

[18] A. Sabry and P. Wadler, A reflection on call-by-value. ACM Transactions on
Programming Languages and Systems, 19(6):916–941, 1997.

[19] M.H. Sørensen and P. Urzyczyn, A syntactic embedding of predicate logic into
second-order propositional logic. Notre Dame Journal of Formal Logic 51(4):457–
473, 2010.

[20] M. Tatsuta, K. Fujita, R. Hasegawa, and H. Nakano, Inhabitation of
polymorphic and existential types. Annals of Pure and Applied Logic 161:1390–
1399, 2010.

[21] H. Thielecke, Categorical structure of continuation passing style. Ph.D. Thesis,
University of Edinburgh, 1997.

[22] J. von Plato, Natural deduction with general elimination rules. Archive for
Mathematical Logic 40:541–567, 2001.

[23] J.B. Wells, Typability and type checking in system F are equivalent and
undecidable. Annals of Pure and Applied Logic 98:111–156, 1999.

27

